• Title/Summary/Keyword: %EC%98%81%EC%83%81

Search Result 2, Processing Time 0.02 seconds

Antioxidant and α-glucosidase inhibition activity of seaweed extracts (해조류 추출물의 항산화 및 α-glucosidase 저해 활성)

  • Kim, Jin-Hak;Kang, Hye-Min;Lee, Shin-Ho;Lee, Ju-Young;Park, La-Young
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.290-296
    • /
    • 2015
  • The antioxidant and ${\alpha}$-glucosidase inhibition activities of 10 kinds of seaweeds Ecklonia cava (EC), Ecklonia stolonifera (ES), Eisenia bicyclis (EB), Capsosiphon fulvescens (CF), Sargassum fulvellum (SF), Undaria pinnatifida (UP), Sargassum thunbergii (ST), Codium fragile (CFr), Hizikia fusiformis (HF), and Enteromorpha prolifera (EP) were investigated. Among all the tested seaweed extracts, the total polyphenol and flavonoid contents of the EB extract were highest 150.81 mg/g and 77.02 mg/g, respectively. The DPPH and ABTS radical scavenging abilities of the EB ethanol extract (1 mg/mL) were 86.26% and 99.71%, respectively, and its SOD-like activity and reducing power were 21.34% and 1.710 ($OD_{700}$). The ${\alpha}$-glucosidase inhibition activities of the EC, EB, and ST were above 98% at the 0.1 mg/mL concentration. These results suggest that seaweed extracts effectively prevent the what of antioxidants and decrease the blood glucose level, and may be used to develop various functional products.

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.