• Title, Summary, Keyword: 웹마이닝

Search Result 298, Processing Time 0.04 seconds

Page Logging System for Web Mining Systems (웹마이닝 시스템을 위한 페이지 로깅 시스템)

  • Yun, Seon-Hui;O, Hae-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.847-854
    • /
    • 2001
  • The Web continues to grow fast rate in both a large aclae volume of traffic and the size and complexity of Web sites. Along with growth, the complexity of tasks such as Web site design Web server design and of navigating simply through a Web site have increased. An important input to these design tasks is the analysis of how a web site is being used. The is paper proposes a Page logging System(PLS) identifying reliably user sessions required in Web mining system PLS consists of Page Logger acquiring all the page accesses of the user Log processor producing user session from these data, and statements to incorporate a call to page logger applet. Proposed PLS abbreviates several preprocessing tasks which spends a log of time and efforts that must be performed in Web mining systems. In particular, it simplifies the complexity of transaction identification phase through acquiring directly the amount of time a user stays on a page. Also PLS solves local cache hits and proxy IPs that create problems with identifying user sessions from Web sever log.

  • PDF

Development and Application of An Adaptive Web Site Construction Algorithm (적응형 웹 사이트 구축을 위한 연관규칙 알고리즘 개발과 적용)

  • Choi, Yun-Hee;Jun, Woo-Chun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.423-432
    • /
    • 2009
  • Advances in information and communication technologies are changing our society greatly. In knowledge-based society, information can be obtained easily via communication tools such as web and e-mail. However, obtaining right and up-to-date information is difficult in spite of overflowing information. The concept of adaptive web site has been initiated recently. The purpose of the site is to provide information only users want out of tons of data gathered. In this paper, an algorithm is developed for adaptive web site construction. The proposed algorithm is based on association rules that are major principle in adaptive web site construction. The algorithm is constructed by analysing log data in web server and extracting meaning documents through finding behavior patterns of users. The proposed algorithm has the following characteristics. First, it is superior to existing algorithms using association rules in time complexity. Its superiority is proved theoretically. Second, the proposed algorithm is effective in space complexity. This is due to that it does not need any intermediate products except a linked list that is essential for finding frequent item sets.

Web Mining for successful e-Business based on Artificial Intelligence Techniques (성공적인 e-Business를 위한 인공지능 기법 기반 웹 마이닝)

  • 이장희;유성진;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.159-175
    • /
    • 2002
  • Web mining is an emerging science of applying modem data mining technologies to the problem of extracting valid, comprehensible, and actionable information from large databases of web in e-Business environment and of using it to make crucial e-Business decisions. In this paper, we present the noble framework of data visualization system based on web mining for analyzing the characteristics of on-line customers in e-Business. We also propose the framework of forecasting system for providing the forecasting information of sales/purchase through the use of web mining based on artificial intelligence techniques such as back-propagation network, memory-based reasoning, and self-organizing map.

  • PDF

A Study on Extracting Ideas from Documents and Webpages in the Field of Idea Mining (아이디어 마이닝 분야에서 문헌과 웹페이지의 아이디어 발췌에 대한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.1
    • /
    • pp.25-43
    • /
    • 2012
  • The ideas and quasi-ideas useful for human's creation were drawn out from documents and webpages with extraction methods used in idea mining, opinion mining, and topic signal mining. The extraction methods comprised (1) decisive cue phrases, (2) cue figures and sounds, (3) contextual signals, and (4) discourse segmentations, They tested on the idea samples, such as thoughts, plans, opinions, writings, figures, sounds, and formulas. Methods (1), (3), and (4) received largely positive evaluation, judging the efficiency of 4 methods by F measure, a mixture of recall and precision ratio. In particular, decisive cue phrase method was effective to search idea and contextual signal method was effective to detect quasi-idea.

Usage Pattern Analysis and Comparative Analysis among User Groups of Web Sites Using Process Mining Techniques (프로세스 마이닝을 이용한 웹 사이트의 이용 패턴 분석 및 그룹 간 비교 분석)

  • Kim, Seul-Gi;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Today, many services are supported on the web sites. Analysis of usage patterns of web site visitors is very important to optimize the use and efficiency of the web sites. In this study, analysis of usage patterns and comparative analysis of user groups were conducted by analyzing web access log provided by BPI Challenge 2016. This data provides access logs to the web site in the IT system of a Dutch Employee Insurance Agency (UWV). The customer information, and the click data describing the customers' behavior when using the agency's web site. In this study, we use process mining techniques to analyze the usage patterns of customers and the characteristics of customer groups, and ultimately improve the service quality of customers using web services.

  • PDF

Popularity-weighted Forward Reference Scheme for High Accuracy in Web Usage Mining (웹 사용 마이닝의 정확도 향상을 위한 인기도 기반 전진 참조 기법)

  • 조현웅;김유성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.133-135
    • /
    • 2001
  • 웹 사용 마이닝의 단계중 패턴 발전을 위해 초기 데이타를 정제하는 전처리 과정은 매우 중요한 작업이다. 전처리 과정의 결과가 높은 정확도를 가지고 있다면 마이닝의 결과 역시 보다 정확한 결과를 생성한다는 것은 여러 연구를 통해 널리 알려진 사실이다. 본 논문에서는 전처리 과정중 내용 페이지를 구분하기 위해 자주 이용되는 기법중 하나인 최대 전진 참조(M.F.R : Maximal Forward Reference) 기법을 개선한 인기도 기반 전진 참조(P.F.R : Popularity-weighted Forward Reference) 기법을 제안하고 예제를 통해 두 기법의 결과를 비교하였다. 그 결과 최대 전진 참조 기법에서 발생할 수 있는 오류를 극복한 인기도 기반 기법이 좀더 정확한 내용 페이지 구분이 가능하여 웹 사용 마이닝 단계에서 유용하게 활용 할 수 있음을 보였다.

  • PDF

Web Usage Mining Using Fuzzy Association Rule Considering User Feedback (사용자의 피드백을 통한 퍼지 연관규칙의 웹 사용자 마이닝)

  • 장재성;오경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.49-51
    • /
    • 2001
  • 데이터 마이닝은 KDD의 분야로서, 의미 있는 정보와 관심 있는 행동 패턴을 추출해 나가는 과정이다. WWW의 발전으로, 웹 데이터가 거대해지고 있다. 이러한 데이터 마이닝 분야에서도, 웹 사용 마이닝의 목적은 의미 있는 사용자 행동 패턴을 찾아내는 것이다. 특히 현재 전자상거래가 널리 활성화되고 있는 환경에서, 사용자의 특성을 발견해내는 것은 매우 중요한 부분이다. 사용자의 특성에 따라 사용자에게 상품을 추천하거나 메일을 보내는 것이나 사용자에게 적절하게 사이트를 구축하는 것이 가능하다. 전처리 과정을 통해서 추출된 트랜잭션 데이터를 모호한 사용자의 요구를 분석할 수 있는 퍼지 집합으로 변형시켜 Fuzzy Association Rule을 통해 분석한다. 그리고 분석된 결과에 대한 규칙을 사용자의 피드백을 통해서 다시 분석하는 과정을 거치게 된다. 사용자의 요구 사항을 적절히 반영할 수 있다.

  • PDF

Interplay of Text Mining and Data Mining for Classifying Web Contents (웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구)

  • 최윤정;박승수
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.33-46
    • /
    • 2002
  • Recently, unstructured random data such as website logs, texts and tables etc, have been flooding in the internet. Among these unstructured data there are potentially very useful data such as bulletin boards and e-mails that are used for customer services and the output from search engines. Various text mining tools have been introduced to deal with those data. But most of them lack accuracy compared to traditional data mining tools that deal with structured data. Hence, it has been sought to find a way to apply data mining techniques to these text data. In this paper, we propose a text mining system which can incooperate existing data mining methods. We use text mining as a preprocessing tool to generate formatted data to be used as input to the data mining system. The output of the data mining system is used as feedback data to the text mining to guide further categorization. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We apply this method to categorize web sites containing adult contents as well as illegal contents. The result shows improvements in categorization performance for previously ambiguous data.

  • PDF

Multi Concept Network based on User's Web Usage Data (사용자 웹 사용 정보에 기반한 멀티 컨셉 네트워크의 생성)

  • Yun, Gwang-Ho;Yun, Tae-Bok;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.179-182
    • /
    • 2008
  • 웹의 방대한 데이터에서 사용자에게 유용한 정보를 제공하기 위하여 다양한 연구가 시도되고 있다. 웹 사용 마이닝은 웹 사용자의 로그 정보를 기반으로 웹페이지를 평가할 수 있는 유용한 방법이다. 하지만 웹 사용 마이닝을 이용한 웹 페이지 평가에는 사용자들의 다양한 성향 패턴을 무시한 일괄적인 모델을 생성하는데 주를 이루고 있다. 본 논문은 사용자 관심 키워드에 대한 웹 페이지 사용 정보를 수집하고 분석하여 멀티 컨셉 네트워크(Multi Concept Network : MC-Net)를 생성한다. MC-Net은 사용자 관심 키워드에 기반한 다양한 성향 정보에 따른 웹 페이지 연결망을 제공한다. 생성된 MC-Net은 웹 페이지 추천을 위하여 유용하게 사용할 수 있으며, 실험을 통하여 제안하는 방법의 유효함을 확인하였다.

  • PDF

인터넷 프로모션의 지식 인프라

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.12
    • /
    • pp.28-29
    • /
    • 1999
  • 데이터 마이닝을 통해 기업은 웹사이트상의 패턴을 의미 있는 정보로 종합해내고 인터넷 상의 고객들과 예상치를 이해하고 연관시킬수 있게 된다. 데이터와 웹이 제공하는 방대한 사업지식의 흐름에 근거한 웹 마이닝은 온라인 고객과의 관계를 생성하고 유지시키며 생산성 있는 온라인 상점의 최전선을 구축하는데 있어 결정적 열쇠가 되는 것이다.

  • PDF