• Title, Summary, Keyword: 웹마이닝

Search Result 299, Processing Time 0.047 seconds

An Efficient Algorithm for Multi-dimensional Sequential Pattern Mining (다차원 순차패턴 마이닝을 위한 효율적 알고리즘)

  • 이순신;김은주;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.214-216
    • /
    • 2004
  • 순차패턴 마이닝은 데이터들 속에서 어떤 순차 관계가 들어 있는 패턴을 찾는 것이다. 순차 패턴은 다양한 분야에서 중요하게 쓰인다. 예를 들어, 소비자가 구입한 물품들 간의 순차적인 관계성은 다음에 구입할 물건을 예측하는데 쓰일 수 있다. 또한 방문 웹 페이지의 순차 패턴은 사용자가 방문하고자 하는 다음 페이지를 예측하는데 중요할 수 있다. 본 논문에서는 다차원 순차패턴을 마이닝하는 새로운 효율적인 알고리즘의 구현에 대해 설명한다 다차원 순차 패턴 마이닝은 속성-값(attribute-value) 기술을 포함하는 순차 패턴의 연관 규칙을 찾는 것이다. 다음의 두 가지의 현존하는 효율적 알고리즘을 융합하였다. 순차패턴 마이닝을 위한 PrefixSpan 알고리즘과 비 순차패턴 마이닝을 위한 StarCubing 알고리즘. 새로운 알고리즘은 다차원 데이터를 마이닝 하는 StarCubing알고리즘의 효율성을 이용하므로 다차원 순차 데이터를 마이닝 하는데 효율적일 것이다. 실험결과는 제안한 알고리즘이 특히 작은 최소지지도와 작은 cardinality에서 Seq-Dim과 Dim-Seq 같은 현존하는 알고리즘보다 나은 성능임을 보여준다.

  • PDF

Generator of Dynamic User Profiles Based on Web Usage Mining (웹 사용 정보 마이닝 기반의 동적 사용자 프로파일 생성)

  • An, Kye-Sun;Go, Se-Jin;Jiong, Jun;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.389-390
    • /
    • 2002
  • It is important that acquire information about if customer has some habit in electronic commerce application of internet base that led in recommendation service for customer in dynamic web contents supply. Collaborative filtering that has been used as a standard approach to Web personalization can not get rapidly user's preference change due to static user profiles and has shortcomings such as reliance on user ratings, lack of scalability, and poor performance in the high-dimensional data. In order to overcome this drawbacks, Web usage mining has been prevalent. Web usage mining is a technique that discovers patterns from We usage data logged to server. Specially. a technique that discovers Web usage patterns and clusters patterns is used. However, the discovery of patterns using Afriori algorithm creates many useless patterns. In this paper, the enhanced method for the construction of dynamic user profiles using validated Web usage patterns is proposed. First, to discover patterns Apriori is used and in order to create clusters for user profiles, ARHP algorithm is chosen. Before creating clusters using discovered patterns, validation that removes useless patterns by Dempster-Shafer theory is performed. And user profiles are created dynamically based on current user sessions for Web personalization.

Improving Web Personalization Service Using Web Mining and Collaborative Filtering (웹 마이닝과 협력적 정보 여과를 이용한 개인화 서비스의 성능 개선 방안)

  • 이치훈;고세진;김용환;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.63-65
    • /
    • 2000
  • 웹 개인화 기술의 발달은 많은 업체들이 기존 고객의 유지와 신규 고객의 확보를 위한 수단을 제공하였다. 현재의 개인화 기술은 크게 내용 기반 그리고 협력적 정보 여과 방식에 기반한 기술로 나뉘어질 수 있다. 내용 기반 정보 여과 방식에 기반한 개인화 기술은 멀티미디어 정보로 표현된 대부분의 웹 오브젝트(페이지, 이미지, 동영상, 사운드, 상품 등)에는 적용하기 어렵고, 협력적 정보 여과방식은 Cold Start Problem과 단일 도메인내에서의 개인화 서비스만이 가능하다는 문제점이 있다. 본 논문에서는 협력적 정보 여과 방식과 데이터 마이닝 기술 중의 연관 규칙 생성 방법을 혼합한 웹 개인화 시스템을 제안한다. 다양한 멀티미디어 형태로 표현되는 웹 오브젝트의 내용 분석이 어려우므로, 각각의 오브젝트를 하나의 아이템으로 인식하고 개인화 서비스를 시도하는 협력적 정보 여과 방식을 채택하였다. 협력적 정보 여과의 결과로 발견된 도메인별 유사 사용자의 웹 오브젝트 사용 정보를 연관 규칙 생성 알고리즘에 적용하여 오브젝트간의 연관성을 발견한다. 발견된 오브젝트간의 연관성은 서로 다른 정보 도메인의 오브젝트가 현재 사용자에게 흥미있는 것인가를 예측할 수 있는 자료로서 사용될 수 있다. 협력적 정보 여과 방식에 의해 생성된 오브젝트의 선호도값과 오브젝트 연관성 정보를 비교하여 사용자에게 개인화된 웹 서비스를 제공한다.

  • PDF

Dynamic Linking System Using Related Web Documents Classification and Users' Browsing Patterns (연관 웹 문서 분류와 사용자 브라우징 패턴을 이용한 동적 링킹 시스템)

  • Park, Young-Kyu;Kim, Jin-Su;Kim, Tae-Yong;Lee, Jung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.305-308
    • /
    • 2000
  • 웹사이트 설계자의 주관적 판단에 의한 정적 하이퍼텍스트 링킹은 모든 사용자들에게 동일한 링크를 제공한다는 단점을 가지고 있다. 이러한 문제점을 개선하고, 각 사용자들의 브라우징 패턴에 적합한 웹 문서들을 동적 링크로 제공해주기 위한 여러 동적 링킹 시스템들이 제안되었다. 그러나 대부분의 동적 링킹 시스템들은 사용자의 현재 브라우징 패턴과 가장 유사한 패턴 정보만을 이용해 동적 링크를 제공하기 때문에 연관성이 없는 웹 문서들에 대한 링크를 수시로 제공한다는 또 다른 문제를 지니고 있다. 본 논문에서는 데이터 마이닝의 한 응용 분야인 웹 마이닝 기법을 이용하여 웹 서버의 로그파일로부터 사용자들의 브라우징 패턴을 분석해내고, 다차원 데이터 집합에 적합한 Association Rule Hypergraph Partitioning(ARHP) 알고리즘을 이용하여 서로 연관성이 있는 웹 문서들을 분류한다. 사용자 브라우징 패턴 정보로부터 사용자에게 추천해줄 1차 링크 집합을 생성하고, 연관 웹 문서 정보를 이용하여 2차 링크 집합을 생성한다. 그리고 두 링크 집합에 공통으로 포함된 링크 집합만을 사용자에게 동적으로 추천해줌으로써 사용자가 보다 편리하고 정확하게 웹사이트를 브라우징 할 수 있도록 하는 동적 링킹 시스템을 제안한다.

  • PDF

A Clustering Algorithm for Sequence Data Using Rough Set Theory (러프 셋 이론을 이용한 시퀀스 데이터의 클러스터링 알고리즘)

  • Oh, Seung-Joon;Park, Chan-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • The World Wide Web is a dynamic collection of pages that includes a huge number of hyperlinks and huge volumes of usage informations. The resulting growth in online information combined with the almost unstructured web data necessitates the development of powerful web data mining tools. Recently, a number of approaches have been developed for dealing with specific aspects of web usage mining for the purpose of automatically discovering user profiles. We analyze sequence data, such as web-logs, protein sequences, and retail transactions. In our approach, we propose the clustering algorithm for sequence data using rough set theory. We present a simple example and experimental results using a splice dataset and synthetic datasets.

  • PDF

Semi-Automatic Ontology Generation about XML Documents using Data Mining Method (데이터 마이닝 기법을 이용한 XML 문서의 온톨로지 반자동 생성)

  • Gu Mi-Sug;Hwang Jeong-Hee;Ryu Keun-Ho;Hong Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3
    • /
    • pp.299-308
    • /
    • 2006
  • As recently XML is becoming the standard of exchanging web documents and public documentations, XML data are increasing in many areas. To retrieve the information about XML documents efficiently, the semantic web based on the ontology is appearing. The existing ontology has been constructed manually and it was time and cost consuming. Therefore in this paper, we propose the semi-automatic ontology generation technique using the data mining technique, the association rules. The proposed method solves what type and how many conceptual relationships and determines the ontology domain level for the automatic ontology generation, using the data mining algorithm. Appying the association rules to the XML documents, we intend to find out the conceptual relationships to construct the ontology, finding the frequent patterns of XML tags in the XML documents. Using the conceptual ontology domain level extracted from the data mining, we implemented the semantic web based on the ontology by XML Topic Maps (XTM) and the topic map engine, TM4J.

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

The Analysis of Individual Learning Status on Web-Based Instruction (웹기반 교육에서 학습자별 학습현황 분석에 관한 연구)

  • Shin, Ji-Yeun;Jeong, Ok-Ran;Cho, Dong-Sub
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.107-120
    • /
    • 2003
  • In Web Based Instruction, as evaluation of learning process means individual student's learning activity, it demands data on learning time, pattern, participation, environment in a specific learning contents. The purpose of this paper is to reflect analysis results of individual student's learning status in achievement evaluation using the most suitable web log mining to settle evaluation problem of learning process, an issue in web based instruction. The contents and results of this study are as following. First, conformity item for learning status analysis is determined and web log data preprocessing is executed. Second, on the basis of web log data, I construct student's database and analyze learning status using data mining techniques.

  • PDF

Empirical Sentiment Classification Using Psychological Emotions and Social Web Data (심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류)

  • Chang, Moon-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • The studies of opinion mining or sentiment analysis have been the focus with social web proliferation. Sentiment analysis requires sentiment resources to decide its polarity. In the existing sentiment analysis, they have been built resources designed with intensity of sentiment polarity and decided polarity of opinion using the ones. In this paper, I will present sentiment categories for not only polarity of opinion but also the basis of positive/negative opinion. I will define psychological emotions to primary sentiments for the reasonable classification. And I will extract the informations of sentiment from social web texts for the actual distribution of sentiments in social web. Re-classifying primary sentiments based on extracted sentiment information, I will organize sentiment categories for the social web. In this paper, I will present 23 categories of sentiment by using proposed method.