• Title, Summary, Keyword: 유리섬유강화플라스틱

Search Result 99, Processing Time 0.046 seconds

섬유함유율에 따른 GF/PP 복합재료의 인장강도

  • 엄윤성;고성위
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • /
    • pp.39-42
    • /
    • 2003
  • 최근에 널리 쓰이고 있는 섬유강화 복합재료는 플라스틱 재료가 갖고 있는 가공성의 장점을 충분히 발휘한 재료로서 모재인 수지와 강화재인 강화섬유로 구성되며 사용된 섬유의 종류에 따라 유리섬유강화플라스틱(GFRP : glass fiber reinforced plastic)과 탄소섬유강화플라스틱(CFRP : carbon fiber reinforced plastic)으로 구분된다. 이 두 복합재료가 건설, 선박, 자동차 그리고 우주항공분야에 이르기까지 거의 모든 산업에서 다양하게 이용되고 있다. (중략)

  • PDF

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

Strength Properties of GFRP Reinforced Glulam Beams Bonded with Polyvinyl Acetate-Based Emulsion Adhesive (초산비닐수지계 접착제를 사용한 유리섬유강화플라스틱 복합집성재의 강도 성능 평가)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This study was carried out to investigate the bending strength properties of the unreinforced glulam beams and the GFRP laminated glulam beams according to the volume ratio of GFRP. The 7-layer glulam beams ($10cm(b){\times}14cm(h){\times}180cm(l)$) were manufactured, using Larch (Larix kaempferi Carr.) laminae ($2cm(h){\times}10cm(b){\times}360cm(l)$), which were dried to the moisture content of 8% and specific gravity of 0.54. GPRP of 0.1 and 0.3 cm was reinforced between the outmost layer of bottom and next layer. When the glulam beams were reinforced with GFRP at the volume ratio of 0.7% and 2.1%, respectively, the bending strength was increased by 12% and 28%, respectively, in the reinforced beams than in control glulam beams. Also, the GFRP reinforced layer of the glulam beams with GFRP laminations blocked the progression of rupture, and the unbroken part held about 90% of the bending strength. In the results of glue joints test, the block shear strength is higher than $7.1N/mm^2$, the standard of KS F3021, and in the result of delamination, the adhesive strength is good as the water soaking and boiling delamination was less than 5%.

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Flexural Behavior of Glass Fiber Reinforced Plastic Pipes (유리섬유 강화 플라스틱관의 휨거동에 관한 연구)

  • 장동일;고재원
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 1993
  • 본 논문에서는 유리섬유의 적층수, 유리섬유의 배향각도에 대한 유리섬유 강화 플라스틱(Glass Fiber Reinforced Plastics ; GFRP)의 인장거동 변화를 고찰하고, 이들의 상관관계를 규명하기 위하여 일련의 GFRP 시험체에 대하여 인장실험을 수행하였다. 시험체는 폭12.5mm, 길이 60mm크기로 일정하게 제작하였으며, 시험체에 대하여 인장실험을 수행하였다. 시험체 제작시 유리섬유로 적층수는 14, 22, 30층, 유리섬유의 배향각도는 0$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$로 하였다. 인장실험시 각 시험체의 파괴양상, 극한하중 및 하중변화에 대한 인장변형율을 조사하였고, 이들 결과를 토대로 유리섬유의 적층수와 배향각도에 따른 GFRP의 극한하중, 응력-변형율 선도 및 탄성계수 등을 비교 분석하였다. 한편 본 논문에서는 유리섬유의 적층수, 직경 변화에 따른 GFRP관의 파괴거동을 고찰하기 위하여 4점 재하법에 의한 GFRP관의 휨파괴실험을 수행하였다. 실험에 사용된 시험체는 길이 1200mm로 하였으며, 유리섬유의 적층수를 30, 35, 40층, 관의 직경을 50, 100, 150mm로 하였다. 파괴실험시 각 시험체의 하중변화에 대한 휨 변형율, 중앙점 처짐량 및 항복하중을 측정하였고, 이들 결과를 토대로 유리섬유으 적층수와 관의 직경에 따라 GFRP관의 항복하중 및 파괴에너지를 비교 분석 하였으며, 항복시 파괴에너지를 추정할 수 있는 제안식을 유도하였다.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

A study on structure analysis system for short fiber reinforced plastics (단섬유강화 플라스틱 복합재료 구조해석 기법연구)

  • Youn, Jee-Young;Kim, Sang-Woo;Park, Bong-Hyun;Lee, Seong-Hoon;Kwon, Tai-Hun;Kim, Ki-Tae
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • This paper deals with anisotropic property and structural analysis for short fiber reinforced plastic composites manufactured by the injection molding process. The common approach for modeling this type of material is the consideration of the material as homogenous and isotropic. However, the common isotropy approach often results in unexpected failure. To overcome this, new structure analysis methodology was developed in order to consider fiber orientation effect using injection mold flow analysis and Halpin-Tsai equations for unidirectional composites and taking an orientation average. The numerical predictions are compared to experimental data for tensile specimen. The predicted mechanical properties agree well with experimental data for fiber orientation and weld line effect. The analysis system was also applied to an automobile part. The proposed anisotropic model predicted different mechanical properties by position of the part and different mechanical performance of the part was changed according to injection gate position.

Investigation of Adhesion property between Glass Fiber Reinforced Plastic and Polyurethane adhesives on Peel strength under Gyogenic tempernture (극저온에서 유리섬유강화플라스틱 표면의 유리섬유와 폴리우레탄 접착제간의 접착특성이 전체 박리강도에 미치는 영향에 대한 연구)

  • Shon, Min-Young;Lee, Jae-Kwang;Hong, Jeong-Lak
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.13-19
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. Even if similar polyurethane adhesive is used for different substrate, it shows different adhesion properties. Specially, variation of adhesion properties depending on the resin system or fiber is very important factor for selection of adhesive on industrial application. In present study, we got different peel strength according to the different test temperature when different polyurethane adhesive was used for same fiber reinforced composite. The main cause was investigated using by SEM and it was proven that the different adhesion property between glass fiber on composite surface and polyurethane adhesives at cryogenic temperature.