• Title/Summary/Keyword: 인공신경망

Search Result 1,490, Processing Time 0.171 seconds

Application of the Artificial Neural Network to Damage Evaluations of a RC Mock-up Structure (구조물 손상평가를 위한 인공신경망의 RC Mock-up 적용 평가)

  • Kim, Ji-Young;Kim, Ju-Yeon;Yu, Eun-Jong;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.687-691
    • /
    • 2010
  • 구조물의 건전도를 평가하기 위해 상시 구조물 계측을 이용한 Structural Health Monitoring (SHM) 시스템을 적용하게 된다. SHM 시스템의 궁극적 목적은 계측된 데이터를 이용하여 구조물의 손상위치 및 손상정도를 분석하여 거주자에게 유지관리정보와 대처요령 신속하게 제공하는 것이다. 따라서 본 연구에서는 구조물의 손상탐지를 위해 인공신경망(Artificial Neural Network)을 도입한 알고리즘을 수립하고, 이를 3층 실대 RC Mock-up 구조물에 적용하여 성능을 평가하였다. 먼저 인공신경망의 학습을 위해 구조해석 프로그램을 이용하여 구조물의 손상에 따른 동적특성 변화 데이터베이스를 구축하였다. 그리고 학습된 인공망에 실제 구조물에서 추출한 동특성의 변화를 입력하여 손상탐지를 실시하였다. 이를 통해 인공신경망의 학습방법, 학습데이터의 정규화 방법 등을 규명하고 인공신경망을 이용한 손상탐지의 효과를 분석하였다.

  • PDF

Calibration of Real Time Rainfall Data Using Mutual Information and Artificial Neural Network (상호정보량 기법과 인공신경망을 이용한 실시간 강우 자료 보정)

  • Sung, Kyung-Min;Goo, Yeo-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1269-1273
    • /
    • 2010
  • 이러한 강우자료의 결측값이나 오자료를 보정하는 것은 그 유역의 정확한 수문학적 특성 파악 및 안전한 수공구조물의 설계에 영향을 미치게 되므로 매우 중요하다고 할 수 있다. 최근 이러한 강우자료를 비선형적 모델인 인공신경망(Artificial Neural Network)을 이용하여 보정하는 연구가 활발히 진행되고 있다(오재우 등, 2008). 그러나 이러한 인공신경망을 적용하는 경우, 선택한 신경망 구조의 형태와 학습(training)을 위해 사용되는 자료가 전체 자료의 특성을 반영하고 있는 정도에 따라 정확도에 차이를 보인다(한광희 등, 2010). 따라서 자료보정을 위한 입력 자료의 선택은 인공신경망을 이용한 결측치 보정의 중요한 과정이다. 본 연구에서는 이러한 입력 자료의 선택을 위한 여러 가지 기법 중 입력 변수간의 상호정보량 (Mutual Information)을 이용한 방법을 적용하여 대상 결측 지점을 보정할 강우지점을 선별한 후 선택된 지점만으로 인공신경망을 구성하여 강우자료를 보정하고 주변 자료를 모두 이용한 결과와 상관성분석으로 얻어진 결과와 비교하였다.

  • PDF

An Artificial Neural Network-based Hero Character Recommendation Training Indirect Information of Overwatch Game (오버워치 게임의 간접 정보를 학습한 인공신경망 기반 영웅 캐릭터 추천)

  • Kim, Sang Won;Jung, Sung Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.155-156
    • /
    • 2017
  • 본 논문에서는 블리자드 회사에서 제작한 게임 중 하나인 오버워치(Overwatch)에서 게임의 간접정보를 학습하여 플레이어에게 유리한 영웅 캐릭터를 추천해주는 인공신경망 기반 영웅 캐릭터 추천 방법을 제안한다. 오버워치에서 게임 맵별로 적군 캐릭터와 아군 캐릭터가 선정되었을 때 플레이어가 어떤 영웅캐릭터를 선정하면 승률에 좋은지를 알기가 어렵다. 본 논문에서는 플레이어의 영웅캐릭터 선정을 도와주기위하여 오버워치 게임의 간접정보를 기반으로 학습데이터를 만들어 인공신경망을 학습한 후 학습한 인공신경망을 이용하여 영웅캐릭터를 추천한다. 실험결과 인공신경망이 추천하는 영웅캐릭터가 적절한 캐릭터임을 확인하였다.

  • PDF

Forecasting of Precipitation Base on Artificial neural network model in Busan (인공신경망 모형을 이용한 부산지점 강우량 예측)

  • Park, Yoonkyung;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.540-540
    • /
    • 2015
  • 유역의 하천관리 및 홍수관리를 위하여 강우량을 정확하게 예측하고자 많은 수문학자들에 의해 강우량을 예측하는 연구를 진행하였다. 강우를 예측하기 위한 여러 가지 방법 중 인공신경망을 이용하여 강우를 예측하는 선행연구들을 살펴볼 수 있었다. 그러나 기존에 강우량을 예측하는 사례들을 살펴보게 되면, 강우사상이 발생된 후 강우량 예측은 비교적 높은 정확도를 가지고 있으나, 강우가 발생하기 시작하는 시점에 대한 강우량 예측은 그 정확성이 떨어지는 것을 확인할 수 있었다. 이에 본 연구에서는 무강우 기간에도 보다 정확하게 강우량을 예측할 수 있는 인공신경망 모델을 제안하고자 한다. 이를 위해 강우량 이외에도 기온, 풍속, 습도, 증기압, 전운량을 인공신경망의 입력자료로 활용하고자 하였다. 입력자료을 구성을 여러 가지 CASE로 구분하여 부산지점의 강우량을 예측하고 그 정확성을 평가하고자 하였다. 이 때, 사용되는 자료는 기상청 부산지점에서 제공하고 있는 1시간 간격자료를 적용하였다. 본 연구를 통해 개발된 인공신경망 모형을 이용하여 예측된 강우량은 부산 내에 위치한 하천관리 뿐 만 아니라 하천의 홍수 예 경보에 필요한 기초적인 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

Supervised Learning Artificial Neural Network Parameter Optimization and Activation Function Basic Training Method using Spreadsheets (스프레드시트를 활용한 지도학습 인공신경망 매개변수 최적화와 활성화함수 기초교육방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.233-242
    • /
    • 2021
  • In this paper, as a liberal arts course for non-majors, we proposed a supervised learning artificial neural network parameter optimization method and a basic education method for activation function to design a basic artificial neural network subject curriculum. For this, a method of finding a parameter optimization solution in a spreadsheet without programming was applied. Through this training method, you can focus on the basic principles of artificial neural network operation and implementation. And, it is possible to increase the interest and educational effect of non-majors through the visualized data of the spreadsheet. The proposed contents consisted of artificial neurons with sigmoid and ReLU activation functions, supervised learning data generation, supervised learning artificial neural network configuration and parameter optimization, supervised learning artificial neural network implementation and performance analysis using spreadsheets, and education satisfaction analysis. In this paper, considering the optimization of negative parameters for the sigmoid neural network and the ReLU neuron artificial neural network, we propose a training method for the four performance analysis results on the parameter optimization of the artificial neural network, and conduct a training satisfaction analysis.

Land Cover Classification of Image Data Using Artificial Neural Networks (인공신경망 모형을 이용한 영상자료의 토지피복분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Kwang, Sik-Yoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.75-83
    • /
    • 2006
  • 본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.

An Educational Case Study of Image Recognition Principle in Artificial Neural Networks for Teacher Educations (교사교육을 위한 인공신경망 이미지인식원리 교육사례연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.791-801
    • /
    • 2021
  • In this paper, an educational case that can be applied as artificial intelligence literacy education for preservice teachers and incumbent teachers was studied. To this end, a case of educating the operating principle of an artificial neural network that recognizes images is proposed. This training case focuses on the basic principles of artificial neural network operation and implementation, and applies the method of finding parameter optimization solutions required for artificial neural network implementation in a spreadsheet. In this paper, we focused on the artificial neural network of supervised learning method. First, as an artificial neural network principle education case, an artificial neural network education case for recognizing two types of images was proposed. Second, as an artificial neural network extension education case, an artificial neural network education case for recognizing three types of images was proposed. Finally, the results of analyzing artificial neural network training cases and training satisfaction analysis results are presented. Through the proposed training case, it is possible to learn about the operation principle of artificial neural networks, the method of writing training data, the number of parameter calculations executed according to the amount of training data, and parameter optimization. The results of the education satisfaction survey for preservice teachers and incumbent teachers showed a positive response result of over 70% for each survey item, indicating high class application suitability.

Prediction of Lateral Deflection and Maximum Bending Moment of Model Piles Using Artificial Neural Network (인공 신경망을 이용한 모형말뚝의 수평변위와 최대 휨모멘트 예측)

  • 김병탁;김영수;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.169-178
    • /
    • 2000
  • 본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.

  • PDF

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models (인공신경망을 이용한 항공기 기내식 수요예측의 예측력 개선 방안에 관한 연구)

  • Lee, Young-Chan;Seo, Chang-Gab
    • The Journal of Information Systems
    • /
    • v.10 no.2
    • /
    • pp.151-164
    • /
    • 2001
  • 현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다

  • PDF