• Title/Summary/Keyword: 인공신경망

Search Result 1,490, Processing Time 0.136 seconds

인공신경망과 사례기반추론을 활용한 옵션가격결정에 관한 연구

  • 김명섭;김광용
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.375-382
    • /
    • 1999
  • 본 연구는 데이터마이닝 기법과 전문가 지식을 활용한 옵션가격 결정모형을 제시하는데 목적이 있다. 첫째, 데이터마이닝 기법 주의 하나인 인공신경망 기법을 활용하여 변동성과 옵션가격을 추정하고, 이를 전통적인 재무이론의 결과와 비교하였다. 인공신경망으로 추정된 변동성은 기존의 모형에 비해 개선된 성과를 보였으며, 가격결정모형은 대등한 성과를 보였다. 또한 모수적 기법과 비모수적 기법의 통합을 통해 성과의 개선을 가져올 수 있음을 보였다. 둘째, 시장 참여자들의 정보를 반영하여 옵션의 이론적 가격결정모형의 성과를 개선할 수 있는 사례기반추론시스템을 제안하였다.

  • PDF

Application of the Artificial Neural Network Technique for Estimation of Structure Responses due to Wind Load (풍하중으로부터 구조반응 추정을 위한 인공신경망 기법의 적용)

  • Moon, Jin-Cheol;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • 고층건물의 최상층 수평변위는 해당 건물의 안전성 및 사용성 평가에 중요한 지표가 된다 이러한 건물의 수평변위는 주로 풍하중에 기인한다 본 논문에서는 이러한 구조반응을 풍하중에 기인한 풍속데이터로부터 직접 추정하기 위해서 인공신경망(Artificial Neural Network, ANN)을 도입하였다 이에 대한 적용성을 판단하기 위해서 고층건물을 형상화한 모형테스트를 실시하고 풍향, 풍속, 변위 값을 얻었다. 이후 인공신경망에 적용시켜 실제 실험 데이터와의 비교를 통해 타당성을 검토하였다.

  • PDF

Application on Prediction of Stream Flow using Artificial Neural Network with Mutual Information and Wavelet Transform (상호정보량기법과 웨이블렛변환을 적용한 인공신경망의 하천유량 예측 활용)

  • Ryu, Yong-Jun;Jung, Yong-Hun;Shin, Ju-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.116-116
    • /
    • 2012
  • 하천유역 내의 인자를 이용하여 댐의 하천유량(stream flow)을 예측하는 일은 수문특성의 연구와 자연재해에 대한 대비 및 수공구조물과 방재시설의 설계 시 중요한 역할을 한다. 이러한 연구는 과거부터 활발히 이루어졌으며, 아직도 보다 높은 정확도의 결과를 얻기 위해 많은 연구들이 이루어지고 있다. 특히 기존의 유역 내 자료를 통해 비선형적 모델인 인공신경망(artificial neural network)을 이용한 하천유량을 예측하는 연구 역시 활발히 이루어지고 있다. 본 연구의 목적은 여러 유역인자들 중 하천유량에 가장 영향을 미치는 변수를 추출하고 보다 정확한 예측모델을 구축하는 것이다. 기존의 입력자료 선정기법중의 하나인 상호정보량(mutual information)과 수문기상자료의 비선형 동역학적 성분을 추출하는 웨이블렛 변환(wavelet transform)을 사용하여 인공신경망에 적용시켰다. 인공신경망을 적용하는 경우, 수문자료에 있어서 변수의 선택과 자료의 상태가 강우예측의 결과에 큰 영향을 미친다. 이러한 변수의 선택에 있어서 상호정보량을 바탕으로 한 인공신경망 입력변수 선택기법이 많이 사용되고 있다. 일반적으로 시계열자료는 경향성(trend), 주기성(periodicity) 및 추계학적 성분(stochastic component)의 선형조합으로 가정될 수 있으며, 특히 경향성과 주기성은 시계열 모형을 위해 제거되어야 할 결정론적 성분으로 취급한다. 즉. 수문 기상자료에 포함되어 있는 경향성과 주기성과 같은 비선형 동역학적 잡음(nonlinear dynamical noise)을 제거하고 입력자료의 카오스적 거동을 보이는 성분을 분리하기 위해 웨이블렛 변환을 사용하였다. 대상유역은 한강 유역에 포함되어 있는 충주댐으로 선택하였다. 유역 내 다양한 인자들과 하천유량사이의 상호정보량을 구해 영향력이 가장 큰 변수를 추출하고, 그 자료를 웨이블렛 변환을 적용하여 인공신경망의 입력자료로 사용하였다. 본 논문에서는 위와 같은 과정을 이용해 추정한 하천유량 결과와 기존의 방법인 상호정보량을 이용해 인공신경망을 적용한 결과를 실제자료와 비교하였다.

  • PDF

Application Assessment of water level prediction using Artificial Neural Network in Geum river basin (인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가)

  • Yu, Wansikl;Kim, Sunmin;Kim, Yeonsu;Hwang, Euiho;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF

Staged Damage Detection of a RC Mock-up Structure by Artificial Neural Network (인공신경망을 이용한 RC Mock-up 구조물의 단계별 손상탐지)

  • Kwon, Hung-Joo;Kim, Ji-Young;Yu, Eun-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.676-679
    • /
    • 2011
  • 인공신경망(Artificial Neural Network)을 이용하여 RC Mock-up 구조물의 손상위치 및 손상정도를 단계적으로 추정하였다. 대상 구조물은 가진실험을 통하여 구조물의 응답을 취득하고 구조물식별기법(Structural System Identification)을 통하여 구조물의 동특성을 찾았다. 유한요소해석프로그램을 사용하여 동특성이 계측치와 가장 유사한 기본해석모델을 만든 후 이 기본해석모델을 이용하여 학습데이터를 생성하였다. 기존 인공신경망을 이용한 손상탐지를 개선하고자 본 연구에서는 인공신경망 학습데이터를 분석하였고 효과적인 손상탐지를 위하여 학습데이터를 가공하였다. 가공된 학습데이터를 사용하여 단계별 손상탐지를 실시하였고 기존 손상탐지 방법보다 좋은 결과를 유도하였다.

  • PDF

Travel Route Scheduling System Utilizing Artificial Neural Networks (인공신경망을 활용한 여행경로 스케줄링 시스템)

  • Kim, Jun-Yeong;Kim, Seog-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.394-396
    • /
    • 2017
  • 본 논문에서는 최근이슈가 되고 있는 인공지능에 대한 많은 기술 가운데 인공신경망을 활용하여 자신이 가고자 하는곳의 여행정보를 스케줄링 하는 시스템을 제안한다. 인공신경망 중에서도 비지도 학습(unsupervised learning)방식을 이용하며 이용자의 가중치에 따라 여행의 나이, 기간, 장소, 종류, 날씨, 계절, 인원 등으로 여행에서의 요소들을 히든레이어로 구성하여 여행지의 스케줄을 구성하여 이용자에게 제공하는 형태이다. 가중치에 따른 여행지의 분류작업이 완료가 되면 기간과 장소의 위치정보에 따라 스케줄링 작업을 완료하게 된다. 기존의 여행지에 대한 정보를 검색에 의해서 이루어지던 환경에서 인공신경망을 활용하여 원하는 여행정보를 추출함으로써 이용자에게 여행정보에 대한 체계화된 정보를 제공할 수 있다.

  • PDF

Usability Test of Non-Financial Information in Bankruptcy Prediction using Artificial Neural Network -The Case of Small and Medium-Sized Firms- (인공신경망을 이용한 중소기업도산예측에 있어서의 비재무정보의 유용성 검증)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.123-134
    • /
    • 1995
  • 인공신경망을 이용한 기업도예측에 관한 연구는 일반적으로 대기업을 대상으로 수행되고 있으며, 분석자료로는주로 재무제표에서 얻어지는 재무정보를 사용하고 있다. 이들 대기업의 재무정보들은 비교적양이 풍부하고 신뢰성이 높기 때문에 인공신경망을 이용한 도산예측의 적중률이 80%∼85%의 높은 수준을 보이고 있다. 하지만, 중소기업이 재무정보는 불충분할 뿐만 아니라 신뢰성이 낮을 가능성이 높기 때문에, 중소기업의 도산예측에 있어서 재무정보만을 사용하게 되면 그 정확도가 떨어지게 된다. 본 연구에서는 인공신경망을 이용한 중소기업의 도산예측에 있어서, 재무정보를 보완할 수 있는 비재무정보의 유용성을 검증하였다. 연구결과 본 연구에서 사용한 비재무정보가 획득가능한 비재무정보중 극히 일부에 지나지 않았음에도 불고하고, 재무정보만을 사용하였을 때보다 예측력이 10%정도나 향상되었다.

  • PDF

인공신경망 사용 핵연료용기 파지 장치의 위치/방향 예견

  • 김기훈;박종범;윤지섭
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.177-182
    • /
    • 1996
  • Remote nuclear cask handling device (RNCHD)는 사용후 핵연료cask의 원격 조작에 있어서 안전성과 성능을 향상을 목적으로 한다. RNCHD의 한부분인 grapple은 사용후 핵연료cask의 이동 및 수송 또는 용기뚜껑의 개폐를 위하여 cask의 벽에 대각선으로 돌출되어있는 두 개의 trunnion에 삽입되어야한다. 그러나 trunnion으로의 grapple 삽입은 용기중심과 grapple 장치 중심사이의 위치와 방향편차 때문에 어렵게된다. 인공신경망은 grapple에 설치된 광전센서를 사용하여 용기의 중심으로 부터 grapple 장치의 상대적 위치를 계측하기위해 사용된다. 인공신경망 학습은 광전센서값과 grapple의 상대적 위치와 방향사이의 함수적 관계를 추론하기 위해 수행된다. 이렇게 측정된 RNCHD의 중심위치는 grapple의 자세를 맞추기 위한 제어입력값으로 제공된다. 인공신경망 학습을 위한 데이터는 grapple 장치와 trunnion을 모사한 1/2 스케일의 실험장치를 사용함으로써 얻어진다. 학습된 인공신경망은 학습에 사용 안된 센서입력값, 즉 새로운 grapple의 위치에 대해서도 정확성을 가지고 grapple 장치의 위치와 방위를 측정할 수 있었다.

  • PDF

Short-Term Rainfall Forecast Using Artificial Neural Network and CAPPI (인공신경망과 CAPPI 자료를 이용한 단기 강우예측)

  • Jee, Gye-Hwan;Oh, Kyoung-Doo;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.72-76
    • /
    • 2011
  • 본 연구는 레이더 강우 영상에서 추출된 강우 패턴을 인공신경망으로 처리하여 단기 강우 예측을 수행하는 방안을 제시한 것이다. 본 연구에 활용한 CAPPI 영상자료로는 편차 보정과 품질 관리가 이루어지고 있으며 획득이 용이한 기상청 자료를 이용하였으며 CAPPI의 PNG 영상으로부터 강우 패턴을 추출하고, 이를 역전파 알고리즘의 인공신경망 강우 예측 모형에 학습시켜 단기 강우를 예측하기 위한 절차를 제시하였다. 이를 위하여 강우의 시공간적 변화 패턴 추출을 위한 영상 처리와 GIS 자료처리 기법을 제시하였고 이를 인공신경망의 단기 강우 예측 학습과 검증에 적용하여 본 연구에서 제시된 기법의 타당성을 검토하였다.

  • PDF

Improving Accuracy of RDAPS Prediction Precipitation using Artificial Neural Networks (인공신경망을 이용한 RDAPS 강수량 예측 정확도 향상)

  • Shin, Ju-Young;Choi, Gi-An;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1013-1017
    • /
    • 2008
  • 이 연구는 기상수치예보 모델 중 지역수치예보모델인 RDAPS 모델을 이용하여 강우자료를 예측한 값과 실제 강우관측지점에서의 강우량을 비교해 보고 RDAPS 예측량의 정확도를 높이기 위한 연구이다. RDAPS 모델의 자료는 00UTC와 12UTC에 3시간 누적 자료를 48시간에 대해서 생성하고, 30km 격자망에 대한 정보를 담고 있기 때문에 1시간 간격으로 측정된 지점 강우량과의 비교를 위해서는 관측지점과 근거리 정보를 찾고 1시간 간격의 관측 자료를 3시간 누적강우량으로 바꾸는 전처리 과정이 필요하다. 실제 강우예측이 어려움을 겪는 것처럼 RDAPS의 예측 강우량과 관측 강우량은 큰 차이를 보이는 것으로 나타났다. 예측 강우량의 정확도를 높이고자 인공신경망을 적용하였다. 인공신경망이란 뇌기능의 특성 몇가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다. 강우수치예측 자료 외에도 RDAPS 모델에서 얻을 수 있는 풍향, 풍속, 상대습도, 기압, 온도 등의 다른 수치자료들을 이용하여 인공신경망을 이용하여 자료들의 패턴을 시뮬레이션 하여 정확도가 높은 예측값을 얻을 수 있었다.

  • PDF