• Title/Summary/Keyword: 인공신경망

Search Result 1,489, Processing Time 0.055 seconds

Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network (인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발)

  • Kim, Jeonghoon;Hong, Jongouk;Byun, Yoseph;Jung, Euiyoup;Seo, Seokhyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.31-37
    • /
    • 2013
  • In this study installation diameter, interval, area replacement ratio and ground hardness of applicable ground in C.G.S method should be mastered through surrounding ground by conducting modeling. Optimum artificial neural network was selected through the study of the parameter of artificial neural network and prediction model was developed by the relationship with numerical analysis and artificial neural network. As this result, C.G.S pile settlement and ground settlement were found to be equal in terms of diameter, interval, area replacement ratio and ground hardness, presented in a single curve, which means that the behavior pattern of applied ground in C.G.S method was presented as some form, and based on such a result, learning the artificial neural network for 3D behavior was found to be possible. As the study results of artificial neural network internal factor, when using the number of neural in hidden layer 10, momentum constant 0.2 and learning rate 0.2, relationship between input and output was expressed properly. As a result of evaluating the ground behavior of C.G.S method which was applied to using such optimum structure of artificial neural network model, is that determination coefficient in case of C.G.S pile settlement was 0.8737, in case of ground settlement was 0.7339 and in case of ground heaving was 0.7212, sufficient reliability was known.

Learning of Artificial Neural Networks about the Prosody of Korean Sentences. (인공 신경망의 한국어 운율 학습)

  • Shin Dong-Yup;Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.121-124
    • /
    • 2001
  • 음성 합성기의 합성음의 자연감을 높이기 위해 자연음에 내재하는 정확한 운율 법칙을 구하여 음성합성 시스템에서 이를 구현해 주어야 한다 무제한 어휘 음성합성 시스템의 문-음성 합성기에서 필요한 운율 법칙은 언어학적 정보를 이용해 구하거나, 자연음에서 추출하고 있다 그러나 추출한 운율 법칙이 자연음에 내재하는 모든 운율 법칙을 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 본 논문에서는 한국어 자연음을 분석하여 추출한 운율 정보를 인공 신경망이 학습하도록 하고 훈련을 마친 인공 신경망에 문장을 입력하고, 출력으로 나오는 운율 정보와 자연음의 운율 정보를 비교한 결과 제안한 인공 신경망이 자연음에 내재하고 있는 운율을 학습할 수 있음을 알 수 있었다. 운율의 3대 요소는 피치 , 지속시간, 크기의 변화이다. 제안한 인공 신경망이 한국어 문장의 음소 열을 입력으로 받아들이고, 각 음소의 지속시간에 따른 피치변화와 크기 변화를 출력으로 내보내면 자연음을 분석해 구한 각 음소의 운율 정보인 목표 패턴과 출력 패턴 의 오차를 최소화하도록 인공 신경망의 가중치를 조절할 수 있도록 설계하였다. 지속시간에 따른 각 음소의 피치와 크기 변화를 학습시키기 위해 피치 및 크기 인공 신경망을 구성하였다. 이들 인공 신경망을 훈련시키기 위해 먼저 음소 균형 문장 군을 구축하여야 하고, 이들 언어 자료를 특정 화자가 일정 환경에서 읽고 이를 녹음하여 , 분석하여 구한운율 정보를 운율 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속 시간과 피치 변화 그리고 크기 변화를 구하고, 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기 값을 구해 운율 데이터베이스를 구축한다. 이 운율 데이터베이스의 일부는 인공 신경망을 훈련시키는데 이용하고, 나머지로 인공 신경망의 성능을 평가하여 인공 신경망이 운율 법칙을 학습할 수 있었다. 언어 자료의 문장 수를 늘리고 발음 횟수를 늘려 운율 데이터베이스를 확장하면 인공 신경망의 성능을 높일 수 있고, 문장 내의 음소의 수를 감안하여 인공 신경망의 입력 단자의 수는 계산량과 초분절 요인을 감안하여 결정해야 할 것이다

  • PDF

Prediction of Water Quality in Large Rivers with Tributary Input using Artificial Neural Network Model (인공신경망 모델을 이용한 지천유입이 있는 대하천의 수질예측)

  • Seo, Il Won;Yun, Se Hun;Jung, Sung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.45-45
    • /
    • 2018
  • 오염물의 혼합거동을 해석하기 위해 물리기반 모델을 이용하는 경우 모델을 구축하고 운용하는데 많은 시간과 재정이 소요되며 현장검증을 통한 검증이 반드시 필요하다. 하지만 데이터 기반 모델의 경우 축적된 데이터만으로도 예측을 수행할 수 있으며 물리기반모델에 비해 결정해야할 입력인자가 적어 모델운용이 용이하다는 장점이 있다. 다양한 데이터 모델 중 인공신경망(ANN) 모델은 데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 모델로 수자원 및 환경 분야에서 자주 사용되고 있다. 본 연구에서는 인공신경망 모델을 이용하여 지천유입이 있는 대하천의 수질인자 (pH, 전기전도도, DO, chl-a)를 예측하였다. 다른 데이터기반 모델과 같이 인공신경망 모델 또한 수집된 데이터 질에 크게 영향을 받으며, 내부 입력인자의 선택이 모델의 예측 결과에 큰 영향을 미친다. 이러한 인공신경망 모델의 특성을 바탕으로 예측모형의 정확도를 향상하기 위해서는 크게 데이터 처리부분과 모델구축 부분에서의 접근이 필요하다. 본 연구에서는 데이터 처리 과정에서 연구대상지점의 각각의 수질인자가 가지는 분포 특성을 유지하기 위해 층화표츨추출법을 이용하여 데이터를 구성하였다. 모델의 구축 과정에서는 초기가중치 값의 영향을 줄이기 위해 앙상블기법을 사용하였으며, 좀 더 견고하고 정확한 결과를 예측하기 위해 탄력적 역전파알고리즘을 추가하였다. 추가적으로 합류 후 본류의 미 계측지역 수질 예측 정확도 향상을 위해 본류의 수질인자뿐만 아니라 지류의 수질인자를 입력자료로 사용하여 모의를 수행하였다. 또한 동일 구간에서 수행한 현장추적자실험 자료를 이용하여 수질인자의 분포특성을 비교, 검증하였다. 개발된 모델을 이용하여 낙동강과 금호강 합류부 하류의 수질인자를 예측한 결과 지류의 수질인자를 입력자료로 추가한 경우 예측의 정확도가 증가하였으며, 현장실험 자료를 통해 밝혀진 오염물의 거동현상을 인공신경망 모델로도 동일하게 재현하는 것으로 나타났다. 본 연구에서 제안한 인공신경모델을 이용한다면 물리기반 수치모델을 대체하여 지천으로 유입된 오염물의 거동을 정확하고 효율적으로 파악할 수 있을 것이다.

  • PDF

Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards (임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF

Control Simulation of Left Ventricular Assist Device using Artificial Neural Network (인공신경망을 이용한 좌심실보조장치의 제어 시뮬레이션)

  • Kim, Sang-Hyeon;Jeong, Seong-Taek;Kim, Hun-Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 1998
  • In this paper, we present a neural network identification and a control of highly complicated nonlinear left ventricular assist device(LVAD) system with a pneumatically driven mock circulation system. Generally, the LVAD system needs to compensate for nonlinearities. It is necessary to apply high performance control techniques. Fortunately, the neural network can be applied to control of a nonlinear dynamic system by learning capability. In this study, we identify the LVAD system with neural network identification(NNI). Once the NNI has learned the dynamic model of the LVAD system, the other network, called neural network controller(NNC), is designed for a control of the LVAD system. The ability and effectiveness of identifying and controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation.

  • PDF

Inflow Forecasting for Reservoir Operation using Artificial Neural Network with RDAPS (인공신경망과 RDAPS 자료를 이용한 유입량 예측)

  • Choi, Gi-An;Lee, Kyoung-Joo;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.23-26
    • /
    • 2009
  • 효과적인 저수지 운영을 위해 가장 중요한 절차는 저수지 유입량을 적절하게 모의하는 것이다. 실시간 저수지 운영의 경우 기존의 물리적인 강우-유출현상에 기초한 수학적인 모형을 이용해서 유입량을 예측하는데 한계가 있으므로 인공신경망과 같이 자료의 특성에 기반한 모형이 효율적인 대안이 될 수 있다. 본 연구에서는 인공신경망(Artificial neural network, ANN)을 이용하여 실시간 저수지 운영을 위해 현재시간을 기준으로 3시간 후, 6시간 후, 9시간 후, 12시간 후의 유입량을 예측하였다. 본 연구의 대상지역은 한강수계의 화천댐 유역으로 기상청 수치예보자료인 RDAPS(Regional Data Assimilation and Prediction System)자료 중에서 강우예측자료를 사용하였다. RDAPS 강우예측자료를 이용한 예측값 결과와 비교하기 위해 지점 강우자료를 사용하였으며, 이 지점 강우자료는 화천댐 유역에 있는 AWS, 기상청, 국토해양부의 지점자료을 이용하였다. RDAPS 강우예측값만을 이용한 유입량 예측결과가 과거 12시간 강우 누적값을 이용한 유입량 예측값과 비슷한 정확도를 가지는 것을 알 수 있었으며, 자료의 효율적인 취득을 고려해야만 하는 실시간 운영의 경우, RDAPS 강우예측자료와 인공신경망을 이용한 모형이 충분히 효과적인 대안이 될 수 있음을 알 수 있다.

  • PDF

Improve Acuracy of Rardar Areal Rainfall using Artificial Neural Network (ANN을 이용한 Radar 면적강우량의 정확도 향상)

  • Kim, Young-Il;Choi, Gi-An;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.37-41
    • /
    • 2009
  • 본 연구에서는 티센망을 이용한 면적강우량 산정방법의 대안으로서 최근 들어 수자원공학 분야에의 활용성이 커지고 있는 고해상도 기상레이더의 반사도자료(dBZ)를 활용하여 면적강우량을 산정하였다. 또한 이렇게 산정된 레이더 면적강우량을 티센망으로써 산정된 면적강우량과 비교하여 그 유용성을 판단하였다. 연구지역으로는 소양강댐 유역을 선정하였으며, 연구기간은 2008년 가장 강한 강우를 보였던 상위 5개의 사상을 선정하였다. 본 연구에서는 레이더 반사도를 강우강도로 변환시키는 과정은 인공신경망(artificial neural network, ANN) 중에서 일반적으로 널리 사용되고 있는 다층 퍼셉트론 인공신경망 모형을 적용하였다. 연구방법으로는 선택된 4개의 인자를 입력노드에 넣어 인공신경망을 학습시킨 후 연구지역 내 10개 AWS 지상관측소의 강우량을 추정하여 정확도를 비교 분석하였다. 이를 바탕으로 최종적으로 레이더 면적강우량을 산정하여 기존의 티센망을 이용한 면적강우량과 그 값을 비교하였다. 그 결과 인공신경망을 이용한 레이더 강우량의 경우, 평균제곱오차(mean square error, MSE) 및 상관계수(correlation coefficient, CC)가 매우 양호한 값을 보였다. 또한 유역 내 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 약 $7%^{\sim}19%$ 정도 차이가 발생함을 확인하였으며, 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 더 정확한 면적강우량을 산정할 수 있다고 판단된다.

  • PDF

Study on Precipitation Prediction Technique using Artificial Neural Network (인공신경망을 이용한 강우예측기법에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

Application of Artificial Neural Networks Technique for the Improvement of Flood Forecasting and Warning System (홍수 예.경보시스템 개선을 위한 인공신경망 이론의 적용)

  • Park, Sung-Chun;Kim, Yong-Gu;Jeong, Choen-Lee;Jin, Young-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1265-1271
    • /
    • 2009
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다. 또한 강우량 및 유출량의 범위에 제한을 받지 않는 강우-유출예측 모형의 개발 및 홍수기로부터 갈수기까지의 보다 넓은 범위의 유출량의 예측에 기여할 것으로 기대된다.

  • PDF