• Title/Summary/Keyword: 인공 신경망

Search Result 2,060, Processing Time 0.037 seconds

Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network (확률신경망을 이용한 철도 판형교의 손상평가)

  • 조효남;이성칠;강경구;오달수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems associated with the conventional artificial neural network, especially the Back Propagation Neural Network(BPNN), are on the need of many training patterns and on the ambiguous relationship between neural network architecture and the convergence of solution. Therefore, the number of hidden layers and nodes in one hidden layer would be determined by trial and error. Also, it takes a lot of time to prepare many training patterns and to determine the optimum architecture of neural network. To overcome these drawbacks, the PNN can be used as a pattern classifier. In this paper, the PNN is used numerically to detect damage in a plate girder railway bridge. Also, the comparison between mode shapes and natural frequencies of the structure is investigated to select the appropriate training pattern for the damage detection in the railway bridge.

Pricing of Derivative Securities Using Artificial Neural Network (파생 금융 상품의 가격 결정을 위한 인공 신경망 기법의 이용)

  • 조희연;양진설
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • 파생금융상품이란 주식이나 채권과 같은 기준자산에 대해서 발행되는 2차 금융상품으로써 기존의 재무이론에서는 수리적 모형에 기반을 둔 가격결정모형을 이용하여 가치를 평가하였다. 그러나 이러한 전통적인 가격결정모형은 복잡한 현실세계를 단순화시키기 위한 제반 가정을 요구하기 때문에 이러한 가정이 현실에 부적합한 경우에는 모형가격이 실제가격으로부터 커다란 괴리를 갖게 된다. 본 연구에서는 전통적인 가격결정방법의 단점을 극복할 수 있는 자료 의존적인 인공신경망기법을 제시하고 대표적인 파생금융상품인 국내 전환사채의 가격결정에 적용해 봄으로써 그 가능성을 제시하였다. 인공신경망기법을 전환사채의 가격결정에 적용한 결과 전통적 가격결정방법에 비해 평균절대오차를 70%정도 줄일 수 있다.

  • PDF

Wireless Impedance-based Steel Bridge Health Monitoring Incorporating Neural Networks (인공신경망기법을 이용한 무선 임피던스 기반 강교량 건전성 모니터링)

  • Min, Ji-Young;Park, Seung-Hee;Yun, Chung-Bang;Shim, Hyo-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.658-661
    • /
    • 2010
  • 본 논문에서는 교량의 볼트 체결부, 응력집중부 등 손상의 발생이 유력한 위치에 부착된 압전센서-무선 임피던스 센서노드를 통해 구조물의 건전성을 지속적으로 모니터링 하는 시스템을 소개하였다. 임피던스 기반 건전성 모니터링에 있어서 구조물에 발생하는 손상에 따라 민감하게 반응하는 주파수 성분이 달라지기 때문에, 이러한 주파수 영역을 자동으로 결정함과 동시에 손상에 관한 정보를 획득하기 위하여 인공신경망 기법을 적용하였다. 제안된 기법은 기존에 구축되어 있는 데이터베이스를 기반으로 구조물에 발생한 손상의 종류 및 손상의 정도를 판단하는 것을 목적으로 한다. 무선 임피던스 센서노드-인공신경망 기반 손상탐색 통합 시스템은 실제 강교량에서 발생한 볼트풀림, 균열 등 국부적인 손상의 진단을 위하여 적용되었으며, 그 유효성을 입증하였다.

  • PDF

The Parallel ANN(Artificial Neural Network) Simulator using Mobile Agent (이동 에이전트를 이용한 병렬 인공신경망 시뮬레이터)

  • Cho, Yong-Man;Kang, Tae-Won
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.615-624
    • /
    • 2006
  • The objective of this paper is to implement parallel multi-layer ANN(Artificial Neural Network) simulator based on the mobile agent system which is executed in parallel in the virtual parallel distributed computing environment. The Multi-Layer Neural Network is classified by training session, training data layer, node, md weight in the parallelization-level. In this study, We have developed and evaluated the simulator with which it is feasible to parallel the ANN in the training session and training data parallelization because these have relatively few network traffic. In this results, we have verified that the performance of parallelization is high about 3.3 times in the training session and training data. The great significance of this paper is that the performance of ANN's execution on virtual parallel computer is similar to that of ANN's execution on existing super-computer. Therefore, we think that the virtual parallel computer can be considerably helpful in developing the neural network because it decreases the training time which needs extra-time.

A Two-Phase Hybrid Stock Price Forecasting Model : Cointegration Tests and Artificial Neural Networks (2단계 하이브리드 주가 예측 모델 : 공적분 검정과 인공 신경망)

  • Oh, Yu-Jin;Kim, Yu-Seop
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.531-540
    • /
    • 2007
  • In this research, we proposed a two-phase hybrid stock price forecasting model with cointegration tests and artificial neural networks. Using not only the related stocks to the target stock but also the past information as input features in neural networks, the new model showed an improved performance in forecasting than that of the usual neural networks. Firstly in order to extract stocks which have long run relationships with the target stock, we made use of Johansen's cointegration test. In stock market, some stocks are apt to vary similarly and these phenomenon can be very informative to forecast the target stock. Johansen's cointegration test provides whether variables are related and whether the relationship is statistically significant. Secondly, we learned the model which includes lagged variables of the target and related stocks in addition to other characteristics of them. Although former research usually did not incorporate those variables, it is well known that most economic time series data are depend on its past value. Also, it is common in econometric literatures to consider lagged values as dependent variables. We implemented a price direction forecasting system for KOSPI index to examine the performance of the proposed model. As the result, our model had 11.29% higher forecasting accuracy on average than the model learned without cointegration test and also showed 10.59% higher on average than the model which randomly selected stocks to make the size of the feature set same as that of the proposed model.

Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network (Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this Paper, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. The system that uses the ANN falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the Separate Learning Algorithm(SLA) of ANN has been proposed by using SVM. This is the method that ANN learns selectively after discriminating the defect position by SVM, then more improved performance estimation can be obtained than using ANN only. The proposed SLA can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure.

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.

A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC (게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘)

  • Joe, In-Whee;Choi, Moon-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1181-1187
    • /
    • 2010
  • This paper proposes a mobile AI (Artificial Intelligence) conducting decision-making in the game through education for intelligent character on the basis of Neural Network. Neural Network is learned through the input/output value of the algorithm which defines the game rule and the problem solving method. The learned character is able to perceive the circumstances and make proper action. In this paper, the mobile AI using Neural Network has been step-by-step designed, and a simple game has been materialized for its functional experiment. In this game, the goal, the character, and obstacles exist on regular 2D space, and the character, evading obstacles, has to move where the goal is. The mobile AI can achieve its goals in changing environment by learning the solution to several problems through the algorithm defined in each experiment. The defined algorithm and Neural Network are designed to make the input/output system the same. As the experimental results, the suggested mobile AI showed that it could perceive the circumstances to conduct action and to complete its mission. If mobile AI learns the defined algorithm even in the game of complex structure, its Neural Network will be able to show proper results even in the changing environment.

Prediction of Landslide Using Artificial Neural Network Model (인공신경망모델을 이용한 산사태 예측)

  • 홍원표;김원영;송영석;임석규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.67-75
    • /
    • 2004
  • The landslide is one of the most significant natural disasters, which cause a lot of loss of human lives and properties. The landslides in natural slopes generally occur by complicated problems such as soil properties, topography, and geology. Artificial Neural Network (ANN) model is efficient computing technique that is widely used to solve complicated problems in many research fields. In this paper, the ANN model with application of error back propagation method was proposed for estimation of landslide hazard in natural slope. This model can evaluate the possibility of landslide hazard with two different approaches: one considering only soil properties; the other considering soil properties, topography, and geology. In order to evaluate reasonably the landslide hazard, the SlideEval (Ver, 1.0) program was developed using the ANN model. The evaluation of slope stability using the ANN model shows a high accuracy. Especially, the prediction of landslides using the ANN model gives more stable and accurate results in the case of considering such factors as soil, topographic and geological properties together. As a result of comparison with the statistical analysis(Korea Institute of Geosciences and Mineral Resources, 2003), the analysis using the ANN model is approximately equal to the statistical analysis. Therefore, the SlideEval (Ver. 1.0) program using ANN model can predict landslides hazard and estimate the slope stability.

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.