• Title/Summary/Keyword: 인공 신경망

Search Result 1,495, Processing Time 0.098 seconds

Calculation of Non-revenue Water Ratio through the Artificial Neural Network of Water Distribution System (인공신경망을 이용한 상수관망 내 무수율 산정)

  • Jang, Dong Woo;Choi, Gye Woon;Park, Hyo Seon;Jo, Hyoung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.120-120
    • /
    • 2017
  • 인천지역의 상수도공급은 팔당댐을 취수원으로 하여 도수, 송수관을 거쳐 인천지역 내 정수장을 통하여 각 급수지역까지 일원화된 관로시스템으로 공급되고 있다. 관망에서의 적절한 수압관리, 노후관로 교체사업 등은 급수관망 내 관로 사고위험을 줄일 수 있고, 누수량을 저감하여 무수율의 감소로 이어질 수 있다. 상수관망 내 누수에 영향을 주는 물리적, 운영적 요소를 파악하고, 이를 이용하여 누수해결을 위한 방법론을 제시하는 것은 매우 중요하다. 본 연구에서는 인천시 배수관망 데이터를 활용하여 통계분석 및 인공신경망을 통하여 무수율에 영향을 미치는 인자를 선별하고, 무수율과의 연관성을 분석하고자 하였다. 이를 위해 대상지역에 대한 시설현황 및 운영자료를 취득하고, 무수율 분석에 활용하였다. 인천시의 소블럭을 대상으로 관로노후도, 배수관연장, 평균관경, 급수전당 공급량, 누수발생 횟수, 용도지역, 관망구성 형태 등을 고려하여 무수율과의 관계분석을 위한 통계분석을 수행하였다. 특히 급수에 필요한 최소에너지와 관망에서 공급되는 에너지를 비교하기 위하여 관망해석 프로그램인 EPANET을 이용하여 관망내 절점에서의 수압과 수요량이 적용된 최소공급에너지를 활용하였고, 이를 통하여 블록 내 과잉공급에너지와 무수율의 영향성을 비교하였다. 최종적으로 산출된 주요인자에 대한 주성분분석, 분산분석, 다중회귀분석 등의 통계분석과 인공신경망에 의해 학습된 알고리즘을 통하여 산정된 무수율을 실측 무수율과 비교, 분석하였다. 인공신경망에 의해 산정된 무수율과 실측 무수율의 정확도를 평가하기 위하여 MAE, MSE, PBIAS 등의 정확도 평가와 산점도 분석을 수행하고, 상관계수를 도출하여 가장 정확한 방법을 결정하였다. 분석 결과 통계분석에 의한 다중회귀식으로 산출된 무수율 보다 인공신경망에 의한 무수율이 실측값에 더욱 근접한 것으로 나타났으며 이용된 뉴런의 수의 따라 산출결과가 상이하기 때문에 최적 뉴런의 수를 산정해야 할 필요가 있음을 확인하였다. 특히 사용된 상수관망 주요인자 중 주성분분석을 통하여 선정된 각 성분을 인공신경망에 적용시 더욱 정확한 무수율 예측이 가능한 것으로 나타났다.

  • PDF

Prediction of Material's Formation Energy Using Crystal Graph Convolutional Neural Network (결정그래프 합성곱 인공신경망을 통한 소재의 생성 에너지 예측)

  • Lee, Hyun-Gi;Seo, Dong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2022
  • As industry and technology go through advancement, it is hard to search new materials which satisfy various standards through conventional trial-and-error based research methods. Crystal Graph Convolutional Neural Network(CGCNN) is a neural network which uses material's features as train data, and predicts the material properties(formation energy, bandgap, etc.) much faster than first-principles calculation. This report introduces how to train the CGCNN model which predicts the formation energy using open database. It is anticipated that with a simple programming skill, readers could construct a model using their data and purpose. Developing machine learning model for materials science is going to help researchers who should explore large chemical and structural space to discover materials efficiently.

Application of Artificial Neural Networks for Prediction of the Unconfined Compressive Strength (UCS) of Sedimentary Rocks in Daegu (대구지역 퇴적암의 일축압축강도 예측을 위한 인공신경망 적용)

  • Yim Sung-Bin;Kim Gyo-Won;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • This paper presents the application of a neural network for prediction of the unconfined compressive strength from physical properties and schmidt hardness number on rock samples. To investigate the suitability of this approach, the results of analysis using a neural network are compared to predictions obtained by statistical relations. The data sets containing 55 rock sample records which are composed of sandstone and shale were assembled in Daegu area. They were used to learn the neural network model with the back-propagation teaming algorithm. The rock characteristics as the teaming input of the neural network are: schmidt hardness number, specific gravity, absorption, porosity, p-wave velocity and S-wave velocity, while the corresponding unconfined compressive strength value functions as the teaming output of the neural network. A data set containing 45 test results was used to train the networks with the back-propagation teaming algorithm. Another data set of 10 test results was used to validate the generalization and prediction capabilities of the neural network.

Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network (인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발)

  • Kim, Jeonghoon;Hong, Jongouk;Byun, Yoseph;Jung, Euiyoup;Seo, Seokhyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.31-37
    • /
    • 2013
  • In this study installation diameter, interval, area replacement ratio and ground hardness of applicable ground in C.G.S method should be mastered through surrounding ground by conducting modeling. Optimum artificial neural network was selected through the study of the parameter of artificial neural network and prediction model was developed by the relationship with numerical analysis and artificial neural network. As this result, C.G.S pile settlement and ground settlement were found to be equal in terms of diameter, interval, area replacement ratio and ground hardness, presented in a single curve, which means that the behavior pattern of applied ground in C.G.S method was presented as some form, and based on such a result, learning the artificial neural network for 3D behavior was found to be possible. As the study results of artificial neural network internal factor, when using the number of neural in hidden layer 10, momentum constant 0.2 and learning rate 0.2, relationship between input and output was expressed properly. As a result of evaluating the ground behavior of C.G.S method which was applied to using such optimum structure of artificial neural network model, is that determination coefficient in case of C.G.S pile settlement was 0.8737, in case of ground settlement was 0.7339 and in case of ground heaving was 0.7212, sufficient reliability was known.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

  • PDF

Prediction of Landslide Using Artificial Neural Network Model (인공신경망모델을 이용한 산사태 예측)

  • 홍원표;김원영;송영석;임석규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.67-75
    • /
    • 2004
  • The landslide is one of the most significant natural disasters, which cause a lot of loss of human lives and properties. The landslides in natural slopes generally occur by complicated problems such as soil properties, topography, and geology. Artificial Neural Network (ANN) model is efficient computing technique that is widely used to solve complicated problems in many research fields. In this paper, the ANN model with application of error back propagation method was proposed for estimation of landslide hazard in natural slope. This model can evaluate the possibility of landslide hazard with two different approaches: one considering only soil properties; the other considering soil properties, topography, and geology. In order to evaluate reasonably the landslide hazard, the SlideEval (Ver, 1.0) program was developed using the ANN model. The evaluation of slope stability using the ANN model shows a high accuracy. Especially, the prediction of landslides using the ANN model gives more stable and accurate results in the case of considering such factors as soil, topographic and geological properties together. As a result of comparison with the statistical analysis(Korea Institute of Geosciences and Mineral Resources, 2003), the analysis using the ANN model is approximately equal to the statistical analysis. Therefore, the SlideEval (Ver. 1.0) program using ANN model can predict landslides hazard and estimate the slope stability.

Application of Artificial Neural Network for estimation of daily maximum snow depth in Korea (우리나라에서 일최심신적설의 추정을 위한 인공신경망모형의 활용)

  • Lee, Geon;Lee, Dongryul;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.681-690
    • /
    • 2017
  • This study estimated the daily maximum snow depth using the Artificial Neural Network (ANN) model in Korean Peninsula. First, the optimal ANN model structure was determined through the trial-and-error approach. As a result, daily precipitation, daily mean temperature, and daily minimum temperature were chosen as the input data of the ANN. The number of hidden layer was set to 1 and the number of nodes in the hidden layer was set to 10. In case of using the observed value as the input data of the ANN model, the cross validation correlation coefficient was 0.87, which is higher than that of the case in which the daily maximum snow depth was spatially interpolated using the Ordinary Kriging method (0.40). In order to investigate the performance of the ANN model for estimating the daily maximum snow depth of the ungauged area, the input data of the ANN model was spatially interpolated using Ordinary Kriging. In this case, the correlation coefficient of 0.49 was obtained. The performance of the ANN model in mountainous areas above 200m above sea level was found to be somewhat lower than that in the rest of the study area. This result of this study implies that the ANN model can be used effectively for the accurate and immediate estimation of the maximum snow depth over the whole country.

Acceleration of CNN Model Using Neural Network Compression and its Performance Evaluation on Embedded Boards (임베디드 보드에서의 인공신경망 압축을 이용한 CNN 모델의 가속 및 성능 검증)

  • Moon, Hyeon-Cheol;Lee, Ho-Young;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.44-45
    • /
    • 2019
  • 최근 CNN 등 인공신경망은 최근 이미지 분류, 객체 인식, 자연어 처리 등 다양한 분야에서 뛰어난 성능을 보이고 있다. 그러나, 대부분의 분야에서 보다 더 높은 성능을 얻기 위해 사용한 인공신경망 모델들은 파라미터 수 및 연산량 등이 방대하여, 모바일 및 IoT 디바이스 같은 연산량이나 메모리가 제한된 환경에서 추론하기에는 제한적이다. 따라서 연산량 및 모델 파라미터 수를 압축하기 위한 딥러닝 경량화 알고리즘이 연구되고 있다. 본 논문에서는 임베디트 보드에서의 압축된 CNN 모델의 성능을 검증한다. 인공지능 지원 맞춤형 칩인 QCS605 를 내장한 임베디드 보드에서 카메라로 입력한 영상에 대해서 원 CNN 모델과 압축된 CNN 모델의 분류 성능과 동작속도 비교 분석한다. 본 논문의 실험에서는 CNN 모델로 MobileNetV2, VGG16 을 사용했으며, 주어진 모델에서 가지치기(pruning) 기법, 양자화, 행렬 분해 등의 인공신경망 압축 기술을 적용하였을 때 원래의 모델 대비 추론 시간 및 분류의 정확도 성능을 분석하고 인공신경망 압축 기술의 유용성을 확인하였다.

  • PDF