• Title/Summary/Keyword: 인공 신경망

Search Result 1,490, Processing Time 0.137 seconds

딥러닝을 활용한 선박가치평가 모델 개발

  • Choi, Jung-suk;Kim, Donggyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.108-110
    • /
    • 2020
  • 본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.

  • PDF

Neural Network-based Signal Processing Technique for Structural Damage Detection (신경망에 기초한 계측신호처리를 이용한 구조물의 손상감지)

  • Lee, Jungwhee;Kim, Sungkon;Kim, Namhee;Chang, Sung-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.267-273
    • /
    • 2002
  • 이 논문은 계측신호 분석에 의한 교량구조물의 건전성 모니터링에 관한 것으로, 2 단계 인공신경망을 사용한 구조물의 손상발견 기법에 대하여 제안하고 있다. 첫 번째 단계의 인공신경망은 구조물로부터 측정된 가속도 신호를 입력으로 사용하여 각각의 가속도계로부터 측정된 신호의 변형정도를 나타내는 신호변형지수를 출력하도록 설계되었다. 손상의 발생 여부를 나타내는 첫 번째 단계 인공신경망의 출력값은 다시 두 번째 단계 인공신경망의 입력으로 사용되어 손상의 위치와 정도를 파악하는데 쓰여진다. 모형교량을 사용한 실험으로부터 얻어진 가속도신호를 사용하여 제안된 방법의 타당성을 확인하였으며, 항후 실 교량에 대한 실험을 통하여 현장 적용의 가능성을 확인할 계획이다.

  • PDF

Wireless Impedance-based Steel Bridge Health Monitoring Incorporating Neural Networks (인공신경망기법을 이용한 무선 임피던스 기반 강교량 건전성 모니터링)

  • Min, Ji-Young;Park, Seung-Hee;Yun, Chung-Bang;Shim, Hyo-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.658-661
    • /
    • 2010
  • 본 논문에서는 교량의 볼트 체결부, 응력집중부 등 손상의 발생이 유력한 위치에 부착된 압전센서-무선 임피던스 센서노드를 통해 구조물의 건전성을 지속적으로 모니터링 하는 시스템을 소개하였다. 임피던스 기반 건전성 모니터링에 있어서 구조물에 발생하는 손상에 따라 민감하게 반응하는 주파수 성분이 달라지기 때문에, 이러한 주파수 영역을 자동으로 결정함과 동시에 손상에 관한 정보를 획득하기 위하여 인공신경망 기법을 적용하였다. 제안된 기법은 기존에 구축되어 있는 데이터베이스를 기반으로 구조물에 발생한 손상의 종류 및 손상의 정도를 판단하는 것을 목적으로 한다. 무선 임피던스 센서노드-인공신경망 기반 손상탐색 통합 시스템은 실제 강교량에서 발생한 볼트풀림, 균열 등 국부적인 손상의 진단을 위하여 적용되었으며, 그 유효성을 입증하였다.

  • PDF

Selection of Input Nodes in Artificial Neural Network for Bankruptcy Prediction by Integrated Link Weight Analysis (통합 연결강도모형에 의한 부도예측용 인공신경망 모형 입력노드 선정에 관한 연구)

  • 이웅규
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.359-368
    • /
    • 2001
  • 본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석 접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드와 연결된 가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정 트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다다변량판별분석 기법 보다 높은 예측율을 보여 주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.

  • PDF

Stage correction during freezing season using artificial neural network (인공신경망 기법을 이용한 결빙기 수위 보정)

  • Jeong, Han-Seok;Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.880-880
    • /
    • 2012
  • 수위-유량자료는 수문모형의 적용 등과 같은 다양한 수자원분야에서 기초적인 관측자료로서 이용되고 있다. 하지만 겨울철 결빙에 따른 수위계의 오작동과 제한된 실측 수위자료에 따른 수위 자료의 보정과 획득에 어려움을 겪고 있다. 본 연구에서는 수자원 분야에서 다양하게 적용된 바 있는 인공신경망 기법과 누적결빙온도일 (AFDD; Accumulated Freezing Degree Days) 개념을 이용하여 오산천 유역의 탑동수위관측점의 결빙기 수위자료를 보정하였다. 연구결과 보정된 수위자료는 강우량과 방류량 등의 영향을 비교적 잘 반영하는 것으로 나타났으며 향후 지속적인 연구를 통해 인공신경망을 이용한 수위 보정 결과를 검정할 수 있어야 할 것이다.

  • PDF

Rainfall frequency analysis using artificial neural network (인공신경망 기법을 이용한 비매개변수적 빈도해석)

  • Jeong, Han-Seok;Lee, Eun-Jung;Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.310-310
    • /
    • 2012
  • 확률강우량 산정은 수공구조물의 설계에 있어서 중요한 과정이다. 확률강우량을 산정함에 있어 지난 수십년간 모멘트법, 최우도법, 확률가중모멘트법, 그리고 L-모멘트법 등의 매개변수적 방법이 발달되어 적용되어 왔다. 매개변수적 빈도해석 방법은 그 적용성이 여러 연구를 통해 검정되었지만 가정한 확률분포와 매개변수 추정방법에 따라 확률강우량이 달라지며 강우지속시간과 기후변화 등에 따른 분포의 변동성을 고려해야 하는 단점이 있다. 매개변수적 빈도해석 방법의 단점을 극복하기 위하여 최근에 핵밀도함수 등을 포함한 다양한 비매개변수적 빈도해석 방법이 제안되고 있다. 본 연구에서는 서울기상관측소의 지난 50년간 지속시간 24시간 강우량을 바탕으로 수자원 분야에서 다양하게 적용된 바가 있는 인공신경망 기법과 대표적인 매개변수적 빈도해석 방법인 L-모멘트법을 이용하여 확률강우량을 산정하고 비교하였다. 그 결과 인공신경망 기법은 전통적인 매개변수방법의 하나인 L-모멘트법 보다 확률강우량 산정에 있어서 높은 정확도를 가지는 것으로 나타났다.

  • PDF

A Study on Numerical Recognition Using Artificial Neural Network (인공신경망을 이용한 숫자인식에 관한 연구)

  • Jun, Min-Hyeok;Kim, Byoung-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.511-514
    • /
    • 2019
  • 인공지능이 정형화된 수치 데이터뿐만 아니라 비정형 데이터까지도 인식해야하는 시대가 왔다. 보안 분야 이외에도 사회 전반에서 숫자 인식을 활용하고 점차 확대되고 있다. 숫자인식을 위해 인공신경망을 이용하였다. 인공신경망은 입력 층, 중간 층, 출력 층으로 이루어져 있다. 각 층은 노드와 노드들을 연결하는 가중치로 구성되어 있다. data set을 입력 값으로 하여 각각의 가중치를 곱한다. 오차역전파법을 이용하여 가중치 값을 갱신한다. 갱신하는 과정에서 학습률과 가중치 조정을 통해 결과 값의 정확도를 연구한다. 궁극적으로 학습된 data set과 인공신경망 알고리즘을 이용하여 손 글씨로 된 숫자를 인식한다. 실험에서 학습률과 중간층의 노드 개수를 조정하여 인식률을 높여간다.

A Study on Pathfinding in Game Environment Using Genetic Algorithm and Neural Network (게임 환경에서의 유전 알고리즘과 인공신경망을 이용한 경로탐색에 관한 연구)

  • Oh, Dong-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.607-608
    • /
    • 2016
  • 진화 알고리즘과 인공신경망은 생물학에서 비롯되어 컴퓨터과학 분야에서 응용되고 있는 문제해결 방법이다. 본 연구는 게임 환경에서 크기를 자율적으로 설정하여 생성할 수 있는 미로를 구성하고, 주어진 미로의 시작점으로부터 목적지까지 유전 알고리즘과 인공신경망을 이용하여 경로탐색을 하는 것에 대한 연구이다. 자동 생성된 미로가 특정 크기 이상으로 커지게 되면, 진화 알고리즘은 무작위적인 값에 의해서 결정되는 것으로 수렴한다는 결론을 얻었고, 인공신경망을 이용한 결과는 진화알고리즘 보다 미로의 경로탐색 문제해결에 적합한 결과를 보여주었다. 또한 어떤 방향이 최적경로인지 아닌지를 미리 알 수 있는 특수한 조건에서는 각 유전인자를 최적값인지 아닌지 표현하는 방법으로 효율적인 진화 알고리즘을 사용할 수 있다는 것을 제안하였다.

A credit prediction model of a capital company′s customers using genetic algorithm based integration of multiple classifiers (유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형)

  • 이웅규;김홍철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • 본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.

  • PDF

Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network (SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee Sang-Myeong;Choi Won-Jun;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.209-212
    • /
    • 2006
  • In this study, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. Effect of altitude variation on the Defect Diagnostics algorithm has been included and evaluated. Separate learning Algorithm(SLA) suggested with ANN to loam the performance data selectively after classifying the position of defects by SVM improves the classification speed and accuracy.

  • PDF