본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.
이 논문은 계측신호 분석에 의한 교량구조물의 건전성 모니터링에 관한 것으로, 2 단계 인공신경망을 사용한 구조물의 손상발견 기법에 대하여 제안하고 있다. 첫 번째 단계의 인공신경망은 구조물로부터 측정된 가속도 신호를 입력으로 사용하여 각각의 가속도계로부터 측정된 신호의 변형정도를 나타내는 신호변형지수를 출력하도록 설계되었다. 손상의 발생 여부를 나타내는 첫 번째 단계 인공신경망의 출력값은 다시 두 번째 단계 인공신경망의 입력으로 사용되어 손상의 위치와 정도를 파악하는데 쓰여진다. 모형교량을 사용한 실험으로부터 얻어진 가속도신호를 사용하여 제안된 방법의 타당성을 확인하였으며, 항후 실 교량에 대한 실험을 통하여 현장 적용의 가능성을 확인할 계획이다.
본 논문에서는 교량의 볼트 체결부, 응력집중부 등 손상의 발생이 유력한 위치에 부착된 압전센서-무선 임피던스 센서노드를 통해 구조물의 건전성을 지속적으로 모니터링 하는 시스템을 소개하였다. 임피던스 기반 건전성 모니터링에 있어서 구조물에 발생하는 손상에 따라 민감하게 반응하는 주파수 성분이 달라지기 때문에, 이러한 주파수 영역을 자동으로 결정함과 동시에 손상에 관한 정보를 획득하기 위하여 인공신경망 기법을 적용하였다. 제안된 기법은 기존에 구축되어 있는 데이터베이스를 기반으로 구조물에 발생한 손상의 종류 및 손상의 정도를 판단하는 것을 목적으로 한다. 무선 임피던스 센서노드-인공신경망 기반 손상탐색 통합 시스템은 실제 강교량에서 발생한 볼트풀림, 균열 등 국부적인 손상의 진단을 위하여 적용되었으며, 그 유효성을 입증하였다.
본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석 접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드와 연결된 가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정 트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다다변량판별분석 기법 보다 높은 예측율을 보여 주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.
수위-유량자료는 수문모형의 적용 등과 같은 다양한 수자원분야에서 기초적인 관측자료로서 이용되고 있다. 하지만 겨울철 결빙에 따른 수위계의 오작동과 제한된 실측 수위자료에 따른 수위 자료의 보정과 획득에 어려움을 겪고 있다. 본 연구에서는 수자원 분야에서 다양하게 적용된 바 있는 인공신경망 기법과 누적결빙온도일 (AFDD; Accumulated Freezing Degree Days) 개념을 이용하여 오산천 유역의 탑동수위관측점의 결빙기 수위자료를 보정하였다. 연구결과 보정된 수위자료는 강우량과 방류량 등의 영향을 비교적 잘 반영하는 것으로 나타났으며 향후 지속적인 연구를 통해 인공신경망을 이용한 수위 보정 결과를 검정할 수 있어야 할 것이다.
확률강우량 산정은 수공구조물의 설계에 있어서 중요한 과정이다. 확률강우량을 산정함에 있어 지난 수십년간 모멘트법, 최우도법, 확률가중모멘트법, 그리고 L-모멘트법 등의 매개변수적 방법이 발달되어 적용되어 왔다. 매개변수적 빈도해석 방법은 그 적용성이 여러 연구를 통해 검정되었지만 가정한 확률분포와 매개변수 추정방법에 따라 확률강우량이 달라지며 강우지속시간과 기후변화 등에 따른 분포의 변동성을 고려해야 하는 단점이 있다. 매개변수적 빈도해석 방법의 단점을 극복하기 위하여 최근에 핵밀도함수 등을 포함한 다양한 비매개변수적 빈도해석 방법이 제안되고 있다. 본 연구에서는 서울기상관측소의 지난 50년간 지속시간 24시간 강우량을 바탕으로 수자원 분야에서 다양하게 적용된 바가 있는 인공신경망 기법과 대표적인 매개변수적 빈도해석 방법인 L-모멘트법을 이용하여 확률강우량을 산정하고 비교하였다. 그 결과 인공신경망 기법은 전통적인 매개변수방법의 하나인 L-모멘트법 보다 확률강우량 산정에 있어서 높은 정확도를 가지는 것으로 나타났다.
인공지능이 정형화된 수치 데이터뿐만 아니라 비정형 데이터까지도 인식해야하는 시대가 왔다. 보안 분야 이외에도 사회 전반에서 숫자 인식을 활용하고 점차 확대되고 있다. 숫자인식을 위해 인공신경망을 이용하였다. 인공신경망은 입력 층, 중간 층, 출력 층으로 이루어져 있다. 각 층은 노드와 노드들을 연결하는 가중치로 구성되어 있다. data set을 입력 값으로 하여 각각의 가중치를 곱한다. 오차역전파법을 이용하여 가중치 값을 갱신한다. 갱신하는 과정에서 학습률과 가중치 조정을 통해 결과 값의 정확도를 연구한다. 궁극적으로 학습된 data set과 인공신경망 알고리즘을 이용하여 손 글씨로 된 숫자를 인식한다. 실험에서 학습률과 중간층의 노드 개수를 조정하여 인식률을 높여간다.
진화 알고리즘과 인공신경망은 생물학에서 비롯되어 컴퓨터과학 분야에서 응용되고 있는 문제해결 방법이다. 본 연구는 게임 환경에서 크기를 자율적으로 설정하여 생성할 수 있는 미로를 구성하고, 주어진 미로의 시작점으로부터 목적지까지 유전 알고리즘과 인공신경망을 이용하여 경로탐색을 하는 것에 대한 연구이다. 자동 생성된 미로가 특정 크기 이상으로 커지게 되면, 진화 알고리즘은 무작위적인 값에 의해서 결정되는 것으로 수렴한다는 결론을 얻었고, 인공신경망을 이용한 결과는 진화알고리즘 보다 미로의 경로탐색 문제해결에 적합한 결과를 보여주었다. 또한 어떤 방향이 최적경로인지 아닌지를 미리 알 수 있는 특수한 조건에서는 각 유전인자를 최적값인지 아닌지 표현하는 방법으로 효율적인 진화 알고리즘을 사용할 수 있다는 것을 제안하였다.
본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.
본 논문에서는 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하지 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. SVM을 이용하여 결함 위치를 판별한 후 인공신경망이 선택적으로 학습하는 분할 학습 알고리즘(SLA)을 제안하였으며 이를 고도 변화에 따른 가스 터빈 엔진의 결함 진단에 적용하여 분류 속도 및 예측 정확률 개선 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.