파생금융상품이란 주식이나 채권과 같은 기준자산에 대해서 발행되는 2차 금융상품으로써 기존의 재무이론에서는 수리적 모형에 기반을 둔 가격결정모형을 이용하여 가치를 평가하였다. 그러나 이러한 전통적인 가격결정모형은 복잡한 현실세계를 단순화시키기 위한 제반 가정을 요구하기 때문에 이러한 가정이 현실에 부적합한 경우에는 모형가격이 실제가격으로부터 커다란 괴리를 갖게 된다. 본 연구에서는 전통적인 가격결정방법의 단점을 극복할 수 있는 자료 의존적인 인공신경망기법을 제시하고 대표적인 파생금융상품인 국내 전환사채의 가격결정에 적용해 봄으로써 그 가능성을 제시하였다. 인공신경망기법을 전환사채의 가격결정에 적용한 결과 전통적 가격결정방법에 비해 평균절대오차를 70%정도 줄일 수 있다.
본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.
Park, Da-Sol;Son, Jeong-Woo;Kim, Sun-Joong;Cha, Jeong-Won
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.120-124
/
2019
딥러닝은 자연어처리, 이미지 처리, 음성인식 등에서 우수한 성능을 보이고 있다. 그렇지만 복잡한 인공신경망 내부에서 어떠한 동작이 일어나는지 검증하지 못하고 있다. 본 논문에서는 비디오 캡셔닝 분야에서 인공신경망 내부에서 어떠한 동작이 이루어지는지 검사한다. 이를 위해서 우리는 각 단계에서 출력층을 추가하였다. 출력된 결과를 검토하여 인공 신경망의 정상동작 여부를 검증한다. 우리는 한국어 MSR-VTT에 적용하여 우리의 방법을 평가하였다. 이러한 방법을 통해 인공 신경망의 동작을 이해하는데 도움을 줄 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.357-357
/
2021
홍수로 인한 침수피해 발생을 최소화하기 위해 정확한 하천의 수위 예측과 리드타임 확보가 매우 중요하다. 특히 조석현상의 영향을 받는 감조하천의 경우 기존의 물리적 수문모형의 적용이 제한되어 하천수위 예측의 정확도가 떨어지기도 한다. 따라서 본 연구에서는 이러한 감조하천 수위 예측의 정확도를 높이기 위해 조석현상을 분리하고 인공신경망을 활용하는 하이브리드 모델을 제안 하였으며 다중 선형회귀분석과 비교 분석하였다. 감조하천에 위치한 교량의 수위데이터에서 Stationary Wavelet Transform으로 조석현상을 분리하였으며, 이외의 수위에 영향을 주는 time series data와 인공신경망(ANN)을 활용하여 1시간, 2시간, 3시간 후의 수위를 예측하였다. 하이브리드 모델은 96% 이상의 정확도를 보였으며 다중 선형회귀 분석과 비교하여도 높은 정확성을 보여주었다.
I estimate stock prices of listed companies using financial information and Ohlson model, which is used for the evaluation of company value. Furthermore, I use the artificial neural network, one of artificial intelligence systems, which are not based on linear relationship between variables, to estimate stock prices of listed companies. By reapplying this in estimating stock prices of newly listed companies, I evaluate the appropriateness in stock valuation with such methods. The result of practical analysis of this study is as follows. On the top of that, the multiplier for the actual stock price is accounted by generating the estimated stock prices based on the artificial neural network model. As a result of the comparison of two multipliers, the estimated stock prices by the artificial neural network model does not show statistically difference with the actual stock prices. Given that, the estimated stock price with artificial neural network is close to the actual stock prices rather than the estimated stock prices with Ohlson model.
Journal of the Korea Society of Computer and Information
/
v.13
no.1
/
pp.89-97
/
2008
In this paper, we present a method for the enhancement of marker detection correctness and marker recognition speed by using artificial neural network. Contours of objects are extracted from the input image. They are approximated to a list of line segments. Quadrangles are found with the geometrical features of the approximated line segments. They are normalized into exact squares by using the warping technique and scale transformation. Feature vectors are extracted from the square image by using principal component analysis. Artincial neural network is used to checks if the square image is a marker image or a non-marker image. After that, the type of marker is recognized by using an artificial neural network. Experimental results show that the proposed method enhances the correctness of the marker detection and recognition.
In this paper development artificial neural networks (ANN) for preliminary design and prediction of urban tunnelling and deep excavation-induced ground settlement was presented. In order to form training and validation data sets for the ANN development, field design and measured data were collected for various tunnelling and deep-excavation sites. The field data were then used as a database for the ANN training. The developed ANN was validated against a testing set and the unused field data in terms of statistical parameters such as R2, RMSE, and MAE. The practical use of ANN was demonstrated by applying the developed ANN to hypothetical conditions. It was shown that the developed ANN can be effectively used as a tool for preliminary excavation design and ground settlement prediction for urban excavation problems.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1605-1609
/
2010
CGCM3.1 SRES B1 시나리오의 2D 변수들을 입력값으로 인공신경망 모형을 이용한 스케일 상세화기법으로 강부식(2009)은 소양강댐 유역의 월 누적강수 경향분석을 실시하였다. 원시 GCM 시나리오를 스케일 상세화 시키기 위한 기법의 하나로 인공신경망 모형을 사용할 수 있는데, 이 경우 GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면 근처에서의 일평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수를 잠재적인 예측인자로 사용하여 신경망을 구성하게 된다. 입력변수세트의 구성은 인공신경망의 계산 효율을 좌우하는 중요한 요소라 할 수 있다. 본 연구에서는 변수의 물리적 특성을 고려하여 순차적인 변수선택을 통한 신경망 입력변수 세트를 구성하고 입력세트 간의 학습성과 비교를 통하여, 최적 입력변수 선정 및 신경망의 학습효과를 높일 수 있는 방법에 대해 연구하였다. 물리적 상관성이 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 하여 순차적인 케이스를 학습해본 결과 huss와 ps를 입력변수로 하는 케이스에 대해서 적은 오차와 높은 상관성을 보였다, 또한, 신경망의 학습 효과를 높이기 위해 홍수기와 비홍수기로 구분하여 학습한 결과 홍수기와 비홍수기로 구분하여 신경망을 구성하였을 경우가 향상된 모의값을 나타내었다. 기후변화모의자료는 CCCma(Canadian Center for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 관측값으로는 AWS에서 제공된 일 누적강수를 사용하였다. 인공신경망의 학습기간은 1997년부터 2000년이며, 검증기간은 2001년부터 2004년으로 구성하였다.
Journal of Advanced Marine Engineering and Technology
/
v.34
no.6
/
pp.914-921
/
2010
When industrial structures are constructed on soft ground, ground subsidence is occurred by problems of bearing capacity. To protect ground subsidence have to improve soft ground, and have to predict settlement estimation for reasonable construction. Artificial Neural Networks(ANN) is adopted for prediction of settlement of construction during the initial design. In the study, Artificial Neural Networks are applied to predict the settlement estimation of initial condition ground and ground improved by D.C.M method. Also, this study compares results of Artificial Neural Networks and results of continuum analysis using Mohr-Coulomb models. In result, settlements of initial condition ground decreased over 0.7 times. Also, by comparing ANN and continuum analysis, coefficient of determination was comparatively high value 0.79. Thought this study, it was confirmed that settlements of improvement ground is predicted using laboratory experiment data.
Kim, Dong-Hyawn;Kim, Young-Jin;Hur, Dong-Soo;Jeon, Ho-Sung;Lee, Chang-Hoon
Journal of Korean Society of Coastal and Ocean Engineers
/
v.22
no.2
/
pp.126-132
/
2010
An approach to calculating expected damage of breakwater assisted by artificial neural network was developed. Wave height in front of a breakwater was predicted by a trained artificial neural network with inputs of wave height in deep ocean and tidal level. Prediction results by the neural network can be comparable to that by professional numerical model for wave transformation. Using the wave prediction neural network, it was very easy and fast to obtain a number of significant waves at breakwater and finally analysis time for expected damage can be shortened. In addition, the effect of considering tidal level in the calculation of expected damage was revealed by comparing the expected damages with and without tidal variation. Therefore, it was pointed out that tidal variation should be considered to improve prediction accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.