• Title/Summary/Keyword: 인공 신경망

Search Result 1,495, Processing Time 0.209 seconds

Prediction of Shear Strength Using Artificial Neural Networks for Reinforced Concrete Members without Shear Reinforcement (인공신경망을 이용한 전단보강근이 없는 철근콘크리트 보의 전단강도에 대한 예측)

  • Jung, Sung-Moon;Han, Sang-Eul;Kim, Kang-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2005
  • Due to the complex mechanism and various parameters that affect shear behavior of reinforced concrete (RC) members, models on shear tend to be complex and difficult to utilize for design of structural members, and empirical relationships formulated with limited test data often work lot members having a specific range of influencing parameters on shear. As an alternative approach tot solving this problem, artificial neural networks have been suggested by some researchers. In this paper, artificial neural networks were used to predict shear strengths of RC beams without shear reinforcement. Especially, a large database that consists of shear test results of 398 RC members without shear reinforcement was used for artificial neural network analysis. Three well known approaches for shear strength of RC members, ACI 318-02 shear provision, Zsutiy's equation, and Okamura's relationship, are also evaluated with test results in the shear database and compared with neural network approach. While ACI 318-02 provided inaccurate predictions for RC members without shear reinforcement, the empirical equations by Zsutty and Okamura provided more improved prediction of Shear strength than ACI 318-02. The artificial neural networks, however provided the best prediction of shear strengths of RC beams without shear reinforcement that was closest to test results.

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.1
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정: 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.227-249
    • /
    • 2003
  • Prediction of corporate failure using past financial data is a well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as model construction process. Irrespective of the efficiency of a teaming procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network model. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables fur neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Application of Artificial Neural Networks for Prediction of the Flow and Strength of Controlled Low Strength Material (CLSM의 플로우 및 일축압축강도 예측을 위한 인공신경망 적용)

  • Lim, Jong-Goo;Kim, Yeon-Joong;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • The characteristics of flow and strength of CLSM depend on the combination ratio including the fly ash, pond ash, cement, water quantity and etc. However, it is very difficult to draw the mechanism about the flow, strength and the mixing ratio of each components. Therefore, the method of calculation drawing the flow about the component ratio of CLSM and compression strength value is needed for the valid practical use of CLSM. To verify the efficiency of artificial neural network, new data which were not used for establishing the model were predicted and compared with the results of laboratory tests. In this research, it was used to evaluate the learning efficiency of the artificial neural network model and the prediction ability by changing the node number of hidden layer, learning rate, momentum, target system error and hidden layer. By using the results, the optimized artificial neural network model which is suitable for a flow and compressive strength estimate of CLSM was determined.

Piezocone Neural Network Model for Estimation of Preconsolidation Pressure of Korean Soft Soils (국내 연약지반의 선행압밀하중 추정을 위한 피에조콘 인공신경망 모델)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.77-87
    • /
    • 2004
  • In this paper a back-propagation neural network model is developed to estimate the preconsolidation pressure of Korean soft soils based on 176 oedometer tests and 63 piezocone test results, which were compiled from 11 sites - western and southern parts of Korea. Only 147 data were used for the training of the neural network and 29 data, which were not used during the training phase, were used for the verification of trained network. Empirical and theoretical models were compared with the developed neural network model. A simple 4-4-9-1 multi-layered neural network has been developed. The cone tip resistance $q_T$ penetration pore pressure $u_2$, total overburden pressure $\sigma_{vo}$ and effective overburden pressure $\sigma'_{vo}$ were selected as input variables. The developed neural network model was validated by comparing the prediction results of the proposed neural network model for the new data which were not used for the training of the model with the measured preconsolidation pressures. It can also predict more precise and reliable preconsolidation pressures than the analytical and empirical model. Furthermore, it can be carefully concluded that neural network model can be used as a generalized model for prediction of preconsolidation pressure throughout Korea since developed model shows good performance for the new data which were not used in both training and testing data.

A Two-Phase Hybrid Stock Price Forecasting Model : Cointegration Tests and Artificial Neural Networks (2단계 하이브리드 주가 예측 모델 : 공적분 검정과 인공 신경망)

  • Oh, Yu-Jin;Kim, Yu-Seop
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.531-540
    • /
    • 2007
  • In this research, we proposed a two-phase hybrid stock price forecasting model with cointegration tests and artificial neural networks. Using not only the related stocks to the target stock but also the past information as input features in neural networks, the new model showed an improved performance in forecasting than that of the usual neural networks. Firstly in order to extract stocks which have long run relationships with the target stock, we made use of Johansen's cointegration test. In stock market, some stocks are apt to vary similarly and these phenomenon can be very informative to forecast the target stock. Johansen's cointegration test provides whether variables are related and whether the relationship is statistically significant. Secondly, we learned the model which includes lagged variables of the target and related stocks in addition to other characteristics of them. Although former research usually did not incorporate those variables, it is well known that most economic time series data are depend on its past value. Also, it is common in econometric literatures to consider lagged values as dependent variables. We implemented a price direction forecasting system for KOSPI index to examine the performance of the proposed model. As the result, our model had 11.29% higher forecasting accuracy on average than the model learned without cointegration test and also showed 10.59% higher on average than the model which randomly selected stocks to make the size of the feature set same as that of the proposed model.

Training Method of Artificial Neural Networks for Implementation of Automatic Composition Systems (자동작곡시스템 구현을 위한 인공신경망의 학습방법)

  • Cho, Jae-Min;Ryu, Eun Mi;Oh, Jin-Woo;Jung, Sung Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.315-320
    • /
    • 2014
  • Composition is a creative activity of a composer in order to express his or her emotion into melody based on their experience. However, it is very hard to implement an automatic composition program whose composition process is the same as the composer. On the basis that the creative activity is possible from the imitation we propose a method to implement an automatic composition system using the learning capability of ANN(Artificial Neural Networks). First, we devise a method to convert a melody into time series that ANN can train and then another method to learn the repeated melody with melody bar for correct training of ANN. After training of the time series to ANN, we feed a new time series into the ANN, then the ANN produces a full new time series which is converted a new melody. But post processing is necessary because the produced melody does not fit to the tempo and harmony of music theory. In this paper, we applied a tempo post processing using tempo post processing program, but the harmony post processing is done by human because it is difficult to implement. We will realize the harmony post processing program as a further work.