• Title/Summary/Keyword: 인공 신경망

Search Result 1,490, Processing Time 0.174 seconds

Possibility Study of Estimating Maximum Depth of Daily Snow Cover by using Algorithm (알고리즘을 이용한 일최심신적설 측정 가능성 연구)

  • Lee, Gun;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.170-170
    • /
    • 2017
  • 본 연구의 목표는 극한 지역의 대비 시스템을 구축하기 위하여 인공 신경망(Artificial Neural Networks)을 이용하여 보다 관측하기 쉬운 기상 인자들로부터 적설량을 실시간 측정 가능성을 제시하는 것이다. 본 연구에서 사용한 데이터베이스는 기상청의 기상자료개방포털에서 사람이 직접 측정한 종관기상관측의 자료다. 이 중에서 일최대 기온, 일최저 기온, 일평균 기온, 강수량을 사용하여 오차를 줄여나가는 최적화방법으로 인공 신경망 시스템을 설계하였다. 설계된 시스템으로 500회 시뮬레이션한 연구 결과는 상관계수가 적설량 측정에 대한 인공 신경망의 크기(노드의 개수)와 관계없이 평균적으로 0.8627인 것을 보여준다. 추가적으로 보조 입력 값인 고도를 사용한 결과, 성능은 좋아졌지만 상관계수의 차이는 평균 0.0044로 미세했다. 또한 Cross-Validation을 통해 기존의 보간법인 Kriging기법과 비교하여 미 관측 지역에서 인공 신경망(ANNs) 사용이 Kriging기법 보다 우수하다는 것을 2차원 Regression's map을 통해 나타냈다. 마지막으로 오차가 크게 발생했을 경우 보안할 수 있는 확률적인 방안을 제시하였다.

  • PDF

A study on nonlinear transform layers in neural networks for image compression (정지영상 압축을 위한 인공신경망 내 비선형 변환 계층 분석)

  • Lee, Jooyoung;Cho, Seunghyun;Kim, Hui Yong;Choi, Jin Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.267-269
    • /
    • 2018
  • 인공신경망의 확산 및 보급에 따라 적용 영역이 확대되고 있으며 여러 분야에서 획기적인 성능 향상을 이루고 있다. 영상 압축 분야의 기술개발은 기존 코덱 구조 내 각 요소기술의 성능향상을 위한 인공신경망 기술 분야와 기존 코덱 구조가 아닌 end-to-end 학습을 통한 인공신경망 기반 기술 분야로 나뉘어 진행되고 있다. 본 논문에서는 end-to-end 학습을 통한 인공신경망 기술의 비선형 변환 계층 중 GDN(generalized divisive normalization) 계층이 영상 압축에 미치는 영향을 분석한다.

  • PDF

Development of Rainfall-Runoff Prediction Model for Self Organizing Map (SOM에 강우-유출 예측모형 개발에 관한 연구)

  • Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm (WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습)

  • Jang, Hyun-Woo;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.969-976
    • /
    • 2017
  • This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.

Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network (인공신경망을 이용한 PHC 매입말뚝의 지지력 평가)

  • Lee, Song;Jang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.213-223
    • /
    • 2006
  • In this study, artificial neural network is applied to the evaluation of bearing capacity of the PHC auger-drilled piles at sites of domestic decomposed granite soils. For the verification of applicability of error back propagation neural network, a total of 168 data of in-situ test results for PHC auger-drilled plies are used. The results show that the estimation of error back propagation neural network provide a good matching with pile test results by training and these results show the confidence of utilizing the neural networks for evaluation of the bearing capacity of piles.

Link Weight Discrimination Analysis based Design of Input Nodes in ANN Models for Bankruptcy Prediction: Strong-Linked Neurons Selection and Weak-Linked Neurons Elimination Approach (연결강도판별분석에 의한 부도예측용 신경망 모형의 입력노드 설계 : 강체연결뉴론 선정 및 약체연결뉴론 제거 접근법)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.469-477
    • /
    • 2000
  • 본 연구에서는 부도예측용 인공신경망 모형의 입력노드를 선정하기 위한 방법론으로 연결강도판별분석(Link Weight Discrimination Analysis)에 의한 약체뉴론제거법(Weak-Linked Neuron Elimination)과 강체뉴론선택법 (Strong-Linked Neurons Selection)을 제안한다. 연결강도판별분석이란 적절한 학습이 끝난 인공신경망 모형에서 입력노드와 연결되는 가중치의 합에 대한 절대값인 연결강도 판별식(Link Weight Discrimination)에 의해 해당 입력노 드가 출력노드에 미치는 영향정도를 분석하는 것이다. 한편 강체연결뉴론선택법은 선처리를 통해 얻어진 학습된 인공신경망의 입력노드 가운데서 연결강도판별식이 큰 뉴론만을 본처리의 입력노드로 선정하는 것인데 비해 약체연결뉴론제거법은 연결강도판별식이 일정 값 즉, 연결강도 판별임계치(Link Weight Discrimination Cut off Value) 보다 낮은 입력노드를 제외하고 나머지 입력노드만을 본처리의 입력노드로 선정하는 것이다. 본 연구에서는 강체연결뉴론선택법과 약체연결뉴론제거법을 각각 정형적인 방법론으로 정립하고 이 방법론에 의해 부도예측용 인공신경망을 구축하여 각각의 모형을 의사결정트리에 의해 선정된 인공신경망 모형 및 선처리 과정을 거치지 않은 인공신경망 모형과 성능을 비교, 분석하여 본 연구에서 제안한 방법론의 타당성을 제시하였다.

  • PDF

Combining SWAT model with artificial neural networks for modelling a daily discharge (일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계)

  • Lee, Do-Hun;Kim, Nam-Won;Jung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

The prediction of fatigue life of muffler by artificial neural network (인공신경망을 이용한 머플러의 피로 수명 예측)

  • Park, Soon-Cheol;Kang, Sung-Su;Yoon, Jin-Ho;Kim, Gug-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.869-876
    • /
    • 2013
  • In order to estimate the fatigue life of mufflers at the early stage of researches and designs, the new prediction process was developed by the artificial neural network, which has the algorism of weldment properties. Bending fatigue test was carried out for defining the characteristics of muffler weldment fatigue life and damage. For considering and predicting mechanical and fatigue properties of the muffler, the maximum stress of weldment was adapted as the variable of artificial neural network training. Also, it was compared with the fatigue life predicting results using fatigue notch factors, for proving the newly developed process of the artificial neural network.

Han River Basin climate forecast using multi-site artificial neural network (다지점 인공신경망을 이용한 한강수계 기후전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Kim, Jung-Joong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.371-371
    • /
    • 2011
  • 본 연구에서는 한강유역 내 관측기간이 충분한 기상청 지상관측소 10개소를 선정하고 CCCma(Canadian Century for Climate modeling and analysis)에서 제공하는 자료에 대한 인공신경망기법 상세화 적용을 실시하였다. 인공신경망의 학습을 위해 CGCM3.1/T63 20C3M시나리오(reference scenario)의 22개 2D변수 중 물리적으로 민감도가 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 선정하였으며 인공신경망 학습기간은 1991년~1995년, 검증기간은 1996년~2000년, 예측기간은 2011년~2100년으로 A1B, A2 B1 시나리오 등 다양한 기후변화 시나리오를 통해 예측band를 제시하고자 하였다. 하지만 공간상관을 고려하기 위하여 각 관측소에 대하여 인공신경망 학습을 하는 경우 관측소간 spatial correlation 및 spatial cluster구현이 어렵기 때문에 Spatial Rectangular Pulse모형을 이용하고자 하였으나, 강수면적에 대한 scale의 결정이 어렵다는 단점을 확인 하고 본 연구에서는 Random Cascade 모형을 이용하여 ${\beta}$를 통한 강수면적 scale(rainy area fraction)을 결정하고자 하였다. Random Cascade모형의 기법은 격자단위의 downscaling기법으로 강수대의 공간적 형상을 재현하며 스케일에 비종속적인(scale-invariant)프랙탈 특성을 이용하여 매개변수를 최소화 할 수 있는 장점을 가진 기법으로 한강유역 1Km내외 강우장을 만들어 topographic effect를 첨가하고자 한다.

  • PDF

Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis (인공신경망과 장단기메모리 모형의 유출량 모의 성능 분석)

  • Kim, JiHye;Kang, Moon Seong;Kim, Seok Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.320-320
    • /
    • 2019
  • 유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.

  • PDF