• Title/Summary/Keyword: 인공 신경망

Search Result 1,495, Processing Time 0.191 seconds

사물인터넷 환경의 이상탐지를 위한 경량 인공신경망 기술 연구

  • Oh, Sungtaek;Go, Woong;Kim, Mijoo;Lee, Jaehyuk;Kim, Hong-Geun;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.53-58
    • /
    • 2019
  • 최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.

An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction (부스팅 인공신경망학습의 기업부실예측 성과비교)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. This paper performs an empirical comparison of Boosted neural networks and traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

A Study on Operation of Reservoir using Artificial Neural Networks (인공신경망을 통한 댐 운영 문제 연구)

  • Kim, Seok Hyeon;Hwang, SoonHo;Jun, SangMin;Kim, Kyeung;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.403-403
    • /
    • 2019
  • 수자원을 효율적으로 관리하고 사용하는 것은 확보한 수자원을 확보한 목표에 맞게 시,공간적으로 적절하게 분배 시키는 것이다. 따라서 저수지 운영의 최종 목표는 댐 건설 목적에 따라 확보된 물을 유입량, 저수량, 용수 수요등을 감안하여 댐 운영 목표에 맞게 최적으로 적절한 양의 물을 적절한 시기에 방류하는 것이다.(손덕환, 2004) 현재 댐군의 운영방법은 확정론적인 방법과 추계학적인 방법이 주로 이용되고 있으나 본 연구에서는 최근 연구가 많이 이루어지고 있는 인공신경망을 적용하여 운영방법으로써의 적용성을 검토하고자한다. 연구대상지로는 수력발전소가 포함된 한강의 충주 다목적댐을 선정하였다. 인공신경망은 입력층에서 출력층사이에 은닉층이 존재하는 다중신경망을 활용하였으며 출력층은 방류량으로 설정하여 발전방류와 수문방류를 구분하여 설정하였다. 방류량 결정을 위한 입력층 구성은 선행 연구들을 참고하여 예측 유입량, 현재 수위, 발전량, 용수 수요량 등을 설정하여 입력층으로 구성하였다. 학습기간의 방류량 자료를 학습하고 검정기간을 통해 실제 이루어진 방류량과 모의된 방류량의 차이를 비교, 분석하여 댐 운영방법으로써의 인공신경망의 적용성을 검토하고자하였다.

  • PDF

Fingerprint Recognition Using Artificial Neural Network (인공신경망을 이용한 지문인식)

  • Jung, Jung-hyun;Choi, Byung-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.417-420
    • /
    • 2014
  • Importance of security system to prevent recently increased financial security accident is increasing. Biometric system between the security systems is focused. Fingerprint recognition has many useful aspects such as security, reliability and portability. In this treatise, fingerprint recognition technique is realized by using artificial neural network. Artificial Neural Network(ANN) is a mathematics learning model that makes specific patterns that a program can recognize to show a nerve network's characteristic on a computer. Input fingerprint images have a preprocessing process such as equalization, binarization and thinning. We extract minutiae feature in the images and program can recognize a fingerprint through ANN.

  • PDF

인공신경망간의 결합에 의한 시계열 모형화에 관한 연구

  • 오상봉
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1998.10a
    • /
    • pp.665-670
    • /
    • 1998
  • 본 연구에서는 시계열자료의 ARMA 모형화를 위해 의사결정트리 분류기상에 존재하는 인공신경망의 구조를 개선하여 이들 각각의 인공신경망으로부터 도출된 결과를 Dempster's rule of combination을 이용하여 결합할 수 있는 방법론을 제시하고 있다. 인공신경망을 이용한 기존의 ARMA 모형화 방법과 비교한 결과, 본 연구에서는 제시한 방법이 주어진 ESACF 특성패턴에 대해 보다 정확하게 ARMA 모형화를 하는 것으로 나타났다.

Training Session Parallel ANN Simulator using Mobile Agent (이동 에이전트에 의한 학습세션 병렬 인공신경망 시뮬레이터)

  • 강태원;조용만;김미숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.13-15
    • /
    • 2003
  • 이 연구는 이동 에이전트 시스템에 기반한 가상의 병렬분산 컴퓨팅 환경에서 병렬로 수행되는 인공신경망 시뮬레이터를 구현하는 것을 목적으로 하며, 학습세션 수준에서 병렬로 학습하는 병렬 인공신경망 시뮬레이터의 성능을 대표적인 벤치마크 문제인 NetTalk을 대상으로 평가한 결과, 개발한 시뮬레이터가 상당히 효과적임을 알 수 있다.

  • PDF

Development of neumerical recognition system using artificial neural network (인공신경망을 이용한 숫자 인식 시스템 개발)

  • Jeong, Chae-Eun;Kim, Byung-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.29-32
    • /
    • 2019
  • 인공신경망은 인간의 신경세포인 뉴런을 모델로서 사용했다. 인간은 외부에서 오는 정보를 뇌에서 받아들이고 판단한다. 받아들인 정보를 통해 어떻게 산출할 것인지에 대한 일들을 기능하게 된다. 그러한 일련의 과정을 필기체 숫자 데이터를 통하여 사람이 유도하는 예측 값을 인식해내고, 학습된 예측 값을 실제 값과 비교해 분석하였다. 그리고 더 나아가 인공신경망에 대해 어떻게 응용할 것인지 논의하였다.

Performance Comparison of DropOut and DropConnect in CNN (CNN에서의 DropOut과 DropConnect에 대한 성능 비교)

  • Jang, Yun-Seok;Lim, Hyun-il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.464-466
    • /
    • 2019
  • CNN 은 합성곱 연산을 사용하는 인공신경망의 한 종류이다. 이러한 인공 신경망에서는 훈련 데이터에 대한 과도한 학습으로 인해 시험 데이터에 제대로 반응하지 못하는 오버피팅이 발생할 우려가 있다. 이를 해결하기 위해 DropOut 과 DropConnect 를 사용할 수 있다. 본 논문에서는 DropOut 과 DropConnect 를 통한 학습 정도를 실험을 통해서 비교해보고, 인공 신경망에서 이 방법의 효과를 살펴본다.

A Development of GUI Flood Forecasting System Using Artificial Neural Networks Theory (인공신경망 이론을 이용한 GUI홍수예측시스템 개발)

  • Park, Sung-Chun;Oh, Chang-Ryol;Kim, Dong-Ryeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.694-698
    • /
    • 2005
  • 본 연구에서는 우리나라 5대강 유역에 대한 홍수예경보시스템의 홍수추적방법으로 이용되고 있는 물리적인 모형인 저류함수법의 한계점을 극복하고, 영산강 유역의 본류를 대표하는 나주지점과 황룡강 유역을 대표하는 선암지점에 대하여 유역의 수문학적 구조를 나타내지 않는 인공신경망 이론을 이용하여 강우-유출 과정의 비선형 모형을 개발하였다. 또한, 신속한 홍수유출량 예측과 예측 결과에 따른 현장 적용이 가능하도록 CS(Client-Server) 기반에서 인공신경망에 대한 원시코드(source code)를 GUI(Graphical User Interface)화하여 홍수예측시스템(Flood Forecasting System : FFS)을 개발하였다. 본 연구결과 나주지점에서는 Model II의 ANN_NJ_9 모형이 선암지점에서는 Model III의 ANN_SA_9 모형이 강우-유출 특성을 가장 잘 반영하였다. 또한, 본 연구에서 개발한 GUI_FFS에 대하여 기 확보된 2004년도 강우 및 유출량 적용한 결과 0.98이상의 $R^2$값을 보임으로서 향후 수자원 및 하천계획 수립과 그에 따른 운영 및 관리에 효율성을 더할 수 있을 것이라 판단된다.

  • PDF

Combining Multiple Neural Networks by Dempster's Rule of Combination for ARMA Model Identification (Dempster's Rule of Combination을 이용한 인공신경망간의 결합에 의한 ARMA 모형화)

    • Journal of Information Technology Application
    • /
    • v.1 no.3_4
    • /
    • pp.69-90
    • /
    • 1999
  • 본 논문은 시계열자료의 ARMA 모형화를 위해 계층적(Hierarchical) 문제해결 방식인 인공신경망 기초 의상결정트리분류기상의 인공신경망 구조를 개선하여 지역문제(Local Problem)를 해결하는 복수개의 인공신경망 결과를 Dempster's rule of combination을 이용하여 종합하는 병행적인 (Parallel) ARMA 모형활르 위한 방법론을 제시함으로써 의사결정트리분류기에 근거한 방법론의 단점을 보완하였다. 본 논문에서 제시한 ARMA 모형화를 위한 방법론은 세 단계로 구성되어 있다: 1) ESACF 특성 벡터 추출단계; 2) 개별 인공신경망에 의한 부분적 모델링 단계; 3) Conflict Resolution 단계, 제시한 방법론을 검증하기 위해 모의실험용 자료와 실제 시계열자료를 이용하여 제시된 방법론을 검증하였으며 실험결과 기존 연구에 비해 ARMA 모형화와 정확도가 높은 것으로 나타났다.

  • PDF