• Title/Summary/Keyword: 자유표면

Search Result 360, Processing Time 0.157 seconds

Experimental technique applied to free surface identification (자유 표면 인식을 위한 실험 기법 개발)

  • 권순홍;박승근;김창일
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.107-112
    • /
    • 1997
  • 본 연구는 자유표면 인삭을 위한 실험 기법 개발에 관한 연구이다. 2차원 수중익에 의해 발생되는 자유표면파를 연구대상으로 삼았다. 실험은 회류수조에서 행하였다. NACA 0012 수중익을 여러가지 길이와 2가지양각에 대해서 실험한 결과 생기는 비선형 자유표면 파를 인식할 수 있도록 영상처리 기술을 도입하였다. 실헙결과 얻은 자유표면 형상을 다른 연구자의 결과와 비교하였다. 비교결과 영상처리의 기법이 자유표면을 인식하는데 대단히 유용한 도구임을 알 수 있었다.

  • PDF

A Numerical Study of Nonlinear Free-surface Flows Generated by Motions of Two Dimensional Cylinders (2차원 실린더의 운동에 기인한 비선형 자유표면 유동의 수치해석)

  • Lee, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 1998
  • 본 논문의 수치해법은 경계치문제를 풀기 위하여 코시이론(Cauchy's theorem)을 사용하였다. 경계치문제는 완전한 물체표면조건과 자유표면조건을 만족시키는 초기치문제로 귀결된다. 현 수치해법에서 무한영역은 수치계산 영역인 비선형 영역과 선형 자유표면조건을 만족하는 선형영역으로 나누어진다. 선형영역의 해는 과도 그린(Green)함수를 사용하여 정합조건을 부과함으로써, 수치계산은 비선형 영역에서만 수행된다. 본 논문에서 저자는 수치계산 영역에서 코시이론을 사용하여 적분방정식을 도출하였고, 무한영역의 해는 정합면에서 과도 그린함수를 사용하여 표현하였다. 본 수치계산에서 자유표면에 요소 재분배법을 적용함으로써 쇄파현상에 대해서도 안정적인 수치해석을 할 수 있었다. 본 논문에서 개발된 수치방법을 적용한 문제는 다음과 같다. 첫째는 자유표면에서 실린더가 강제동요하는 경우에 자유표면형상과 힘을 계산하여 이전의 실험치 및 계산치와 비교하였다. 두번째로는 실린더가 자유수면하에서 일정한 속도로 항주하는 경우에는 조파저항과 양력을 계산하여 고차 스펙트럴법과 비교하였다.

  • PDF

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

Numerical Simulation of Laminar Flows for a Circular Cylinder Vertically Piercing Free Surface (수직원통 주위의 자유표면 층류운동의 수치해석)

  • Bum-Sang Yoon;Yoon-Ho Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.104-114
    • /
    • 1993
  • In this paper, effects of free surface on viscous flow is investigated. Continuity equation coupled with Navier-Stokes equations are solved numerically by using an artificial compressibility method[1, 2]. The body-fitted generalized curvilinear coordinate system is employed to deal with arbitrary body shape. The IAF scheme with finite difference method is used to solve the equations, and a diagonal algorithm is applied to time-varying Jacobian matrices for the computational economics. Free surface shape is obtained by applying zero pressure condition to still water surface at each time step. A numerical test is made for larminar flow around a circular cylinder vertically piercing the free surface. Computed flow patterns are largely affected by the existance of free surface in low Reynolds number flows treated in this paper. Free surface causes viscous pressure drag to vary much in depth direction in accordance with the variations of flow pattern.

  • PDF

Effects of Non-hydrostatic Pressure on Free Surface Environmental Flows (자유표면 환경유동에 대한 비정수압 효과)

  • Yoon, B.S.;Park, C.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.116-121
    • /
    • 2005
  • In the present paper, a new calculation algorithm far solving large scale environmental or geophysical flows with free surface is proposed where the non-hydrostatic pressure component is taken into consideration. Predictor-corrector fractional step approach with explicit, forward time marching scheme in the sigma coordinate system is employed. In order to validate the present calculation algorithm and to estimate the effects of non-hydrostatic pressure on resultant flow and free surface movements, example calculations are carried out for typical steady and unsteady flow problems. Present method can be applied to the meso-scale free surface flows with complex bottom topography where MAC-like 3-d hydrodynamic calculations are quite ineffective and uneconomic.

  • PDF

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Calculation of Nonlinear Interactions between Hydrofoil and Free-Surface by the High-Order Spectral/Boundary-Integral Method (고차 스펙트럴 / 경계적분법에 의한 수중익과 자유표면의 비선형 상호작용 계산)

  • 김용직;하영록
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Under the assumption of potential flow, free-surface flow around a hydrofoil is calculated by the high-order spectra1!boundary-integral method, This method is one of the most efficient numerical methods by which the nonlinear interactions between hydrofoil and free-surface can be simulated in time-domain. In this method. the wave potential which represents the nonlinear evolution of free-surface is solved by the high-order spectral method and the body potential which provides the effects of hydrofoil and shed vortex is solved by the boundary-integral method. The calculated free-surface profiles which are generated by a uniformly translating hydrofoil are compared with other experimental results. And they show relatively good agreements each other. As another example, free-surface flow generated by a heaving and translating hydrofoil is calculated and discussed.

Numeric Analysis of 2-Dimensional Nonlinear Viscous Free-Surface Wave Problems (점성을 고려한 2차원 비선형 자유표면파 문제의 수치해석)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.98-111
    • /
    • 1993
  • Two-dimensional nonlinear free-surface wave problems are analyzed with consideration of viscosity. Navier-Stokes equation and continuity equation are solved by the application of Finite Analytic Method, and MAC scheme is used far the treatment of free surface. Surface tension effect is also considered and laminar flow is assumed. The free-surface waves in shallow water, the flows around a vortex-pair with free surface and the wave ahead of a rectangular body are simulated to test the present numerical scheme. In the shallow water problem, viscous effect due to the friction on the bottom is observed. In the second problem, the approach of a vortex-pair to the free surface is simulated to examine the interaction of vortex-pair with the free surface. In the third problem, the wave ahead of a semi-infinite floating body is simulated.

  • PDF

Time-Domain Simulation of Nonlinear Free-Surface Flows around a Two-Dimensional Hydrofoil (2차원 수중익주위 비선형 자유표면유동의 시간영역 시뮬레이션)

  • Yong-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.45-56
    • /
    • 1994
  • A computationally efficient numerical method based on potential flow is developed for time-domain simulation of the nonlinear free-surface flows around a 2-dimensional hydrofoil. This numerical method, namely, spectral/boundary-element method, is a mixed one of the high-order spectral method and the boundary-element method in time-domain. The high-order spectral method is used to calculate the nonlinear evolution of free-surface, and the boundary-element method is used to calculate the effects of the hydrofoil and the shed vortex. As application examples, nonlinear free-surface flows around a 2-dimensional hydrofoil which starts from the rest and translates near the free-surface with or without harmonic oscillations are calculated. Nonlinear/unsteady results of free-surface waves and hydrodynamic farces are shown and discussed. Particularly, the results of steady-state which are obtained as a special case of the present unsteady solution are compared with others' calculated and experimental results, and good agreements are observed.

  • PDF

Computation of Free Surface Flows and Detection of Sub-Breaking (자유표면파 계산 및 준쇄파 수치연구)

  • Kwag, Seung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.114-122
    • /
    • 1999
  • 준쇄파(쇄파발생정 리플형태의 불안정파)를 수치적으로 해석하고 예측하기 위하여 수중날개를 대상으로 점성유동장의 계산을 수행하였다. Navier-Stokes 방정식을 사용하여 자유수면을 계산하였고 정도향상을 위하여 Euler 형태의 자유표면조건에 고차의 유한차문법을 적용하였다. 이산화 과정에서 자유표면 격자에 3차 풍상미분항을 적용시켜 수치계산을 수행하였고, 계산결과를 사용하여 준쇄파의 생성조건을 규명하였다.

  • PDF