• Title, Summary, Keyword: 잡음 환경

Search Result 1,904, Processing Time 0.051 seconds

Model adaptation employing DNN-based estimation of noise corruption function for noise-robust speech recognition (잡음 환경 음성 인식을 위한 심층 신경망 기반의 잡음 오염 함수 예측을 통한 음향 모델 적응 기법)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.47-50
    • /
    • 2019
  • This paper proposes an acoustic model adaptation method for effective speech recognition in noisy environments. In the proposed algorithm, the noise corruption function is estimated employing DNN (Deep Neural Network), and the function is applied to the model parameter estimation. The experimental results using the Aurora 2.0 framework and database demonstrate that the proposed model adaptation method shows more effective in known and unknown noisy environments compared to the conventional methods. In particular, the experiments of the unknown environments show 15.87 % of relative improvement in the average of WER (Word Error Rate).

Speech Recognition in the Noisy Environments using Hybrid Method of Spectral Subtraction and Noise Masking (스펙트럼 차감법과 잡음 마스킹의 hybrid 방식을 이용한 잡음환경에서의 음성인식)

  • 권영욱
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.343-346
    • /
    • 1998
  • 잡음환경에서의 음성인식 성능향상을 위하여 본 논문에서는 스펙트럼 차감법 이후에 남아 있는 잔여 잡음으로 인한 mismatch를 극복하는 수단으로 기존의 스펙트럼 차감법에서의 flooring factor를 사용하는 대신에 target 잡음레벨을 이용하여 잡음 마스킹을 적용하는 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식을 사용한다. 이 방법은 낮은 SNR에서 개선되지 않는 기존의 잡음 마스킹이 가지는 약점을 극복하고 동시에 스펙트럼 차감버에서의 잔여 잡음 문제를 완화시킬 수 있었다. 특히 시간/주파수 영역 smoothing을 적용함으로써 스펙트럼 차감법과 잡음 마스킹의 hybrid 방식의 적용 이후에도 여전히 남아 있는 일부 잡음을 추가적으로 감소시켰으며, 더욱 향상된 인식성능을 얻을 수 있었다.

  • PDF

Speech recognition in car noise environments using multiple models according to noise masking levls (잡음 마스킹 레벨에 따른 복수 모델을 이용한 자동차 소음환경에서의 음성인식)

  • 정회인
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.60-64
    • /
    • 1998
  • 음성인식 시스템의 실용화 과정에서 훈련환경과 테스트 환경의 불일치로 인한 인식성능의 저하는 반드시 극복되어야 할 문제이다. 본 논문에서는 잡음 tR인 입력음성의 비음성구간에서 잡음레벨을 추정하여 음성 스펙트럼에서 추정된 잡음레벨을 빼는 스펙트럼 차감법고 스펙트럼 영역에서 미리 정해진 마스킹 레벨보다 낮은 에너지 값을 마스킹 레벨로 올려주는 잡음 마스킹을 함께 사용함으로써 훈련 환경과 테스트환경의 불일치를 줄이는 방법을 제안한다. 그리고 복수의 마스킹 레벨에 대한 모델들을 미리 만들어 두고 추정된 잡음 레벨에 따라 적합한 마스킹 레벨의 보델을 사용하여 인식을 수해?는 다중 모델 방법을 적용하였다. 자동차 소음환경에서 두 가지 마스킹 레벨에 대한 모델을 이용한 화자독립고립단어 인식 실험을 통하여 본 논문에서 제안한 방식은 정차중 무시동 환경에서 95.8%, 정차중 시동 환경에서 95.6%, 한적한 도로환경에서 92.8%, 복잡한 시내도로 환경에서 89.6%, 고속도로 환경에서 74.4%의 인식성능을 나타내었으며, 평균 90.7%의 성능을 얻을 수 있다.

  • PDF

음성인식률 향상을 위한 잡음 제거

  • 황동환
    • 전기의세계
    • /
    • v.51 no.12
    • /
    • pp.22-25
    • /
    • 2002
  • 많은 연구를 통해 음성 인식은 잡음이 존재하지 않는 환경에서는 매우 높은 인식률을 보이고 있으며 실제로 여러 분야에서 응용되고 있다 하지만 여러 잡음이 존재하는 환경에서는 그 성능이 급격하게 저하되어 잡음 에 둔감한 인식기와 잡음 제거가 필수적이다. 본 내용에서는 독립 요소 기법에 기반 한 잡음 제거 기법을 소개하고 이를 칩으로 구현하고 그 결과를 고찰해 보겠다.

  • PDF

Noisy Speech Recognition using Probabilistic Spectral Subtraction (확률적 스펙트럼 차감법을 이용한 잡은 환경에서의 음성인식)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.94-99
    • /
    • 1997
  • This paper describes a technique of probabilistic spectral subtraction which uses the knowledge of both noise and speech so as to reduce automatic speech recognition errors in noisy environments. Spectral subtraction method estimates a noise prototype in non-speech intervals and the spectrum of clean speech is obtained from the spectrum of noisy speech by subtracting this noise prototype. Thus noise can not be suppressed effectively using a single noise prototype in case the characteristics of the noise prototype are different from those of the noise contained in input noisy speech. To modify such a drawback, multiple noise prototypes are used in probabilistic subtraction method. In this paper, the probabilistic characteristics of noise and the knowledge of speech which is embedded in hidden Markov models trained in clean environments are used to suppress noise. Futhermore, dynamic feature parameters are considered as well as static feature parameters for effective noise suppression. The proposed method reduced error rates in the recognition of 50 Korean words. The recognition rate was 86.25% with the probabilistic subtraction, 72.75% without any noise suppression method and 80.25% with spectral subtraction at SNR(Signal-to-Noise Ratio) 10 dB.

  • PDF

Changes of radio environment per annum and hour (전파환경 연도별 변화 및 시간대별 변화)

  • 주은정;배차호;이중일
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • /
    • pp.259-263
    • /
    • 2000
  • 21기 정보화사회를 맞이하여 전과서비스 사용의 증가로 인공전파잡음이 계속 증가하는 추세이므로 잡음원과 전파환경 분포를 파악하기 위하여 각 지역의 전파잡음레벨을 조사하고 있다. 그 중 년도별 전파잡음레벨의 변화와 시간에 따른 잡음레벨 변화를 분석해보니 주파수 대역에 따라 특징적인 변화를 보여주고 있다. 따라서 앞으로 주파수 스펙트럼분포와 잡음원과의 관계를 분석하여 전파환경 보호에 관한 대책을 세우고 원활한 전파서비스가 제공될 수 있도록 할 것이다.

  • PDF

Speech Enhancement using the Neural Network Filter (신경망필터를 이용한 음질향상)

  • 김종우;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

Bi-modal speech recognition in noisy environments (잡음환경에서의 바이모달 음성인식)

  • 박병구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.111-114
    • /
    • 1998
  • 기존의 음성인식시스템의 잡음환경에서 인식률의 한계를 극복하기 위해 음성신호뿐만이 아니라 입술정보를 결합하여 음성인식에 이용하여 바이모달(Bi-modal) 음성인식이 근래에 제안되어지고 있다. 그래서 바이모달 음성인식 시스템을 실제로 구현해보고 인식 실험을 수행해 보았다. 입술영상은 이미지에 근거한 입술모양을 파라메터화하여 인식실험에 사용하였으며 음성과 입술영상을 각각 인식한 후 인식스코어(Score)에 가중치를 적용하여 통합하는 방법을 사용하였다. 마지막으로 바이모달 음성인식의 잡음환경에서의 성능을 알아보기 위해 음성신호에 여러 레벨의 잡음을 섞어서 실험을 하고 잡음환경에서 인식률의 한계를 입술정보를 이용하여 극복할 수 있다는 것을 보이고자 한다.

  • PDF

Noise Reduction Algorithm using Average Estimator Least Mean Square Filter of Frame Basis (프레임 단위의 AELMS를 이용한 잡음 제거 알고리즘)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.135-140
    • /
    • 2013
  • Noise estimation and detection algorithm to adapt quickly to changing noise environment using the LMS Filter. However, the LMS Filter for noise estimation for a certain period of time and need time to adapt. If the signal changes occur, have the disadvantage of being more adaptive time-consuming. Therefore, noise removal method is proposed to a frame basis AELMS Filter to compensate. In this paper, we split the input signal on a frame basis in noisy environments. Remove the LMS Filter by configuring noise predictions using the mean and variance. Noise, even if the environment changes fast adaptation time to remove the noise. Remove noise and environmental noise and speech input signal is mixed to maintain the unique characteristics of the voice is a way to reduce the damage of voice information. Noise removal method using a frame basis AELMS Filter To evaluate the performance of the noise removal. Experimental results, the attenuation obtained by removing the noise of the changing environment was improved by an average of 6.8dB.

Efficient Speaker Verification in Noise Environment with Noise-added Speaker Model Composition (잡음 첨가된 화자 모델 구성에 의한 잡음 환경의 효과적인 화자확인)

  • 안성주;강선미;고한석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.542-544
    • /
    • 1999
  • 본 논문에서는 다수의 화자 모델을 구성함으로써 잡음에 강인한 화자확인 방법을 제안한다. Non-stationary한 잡음을 가진 입력음성의 SNR을 측정하는 것은 어렵기 때문에, 각 화자에 대해 잡음이 없을 때의 화자모델에 여러 SNR에 대한 잡음 모델을 결합시킴으로써 여러 개의 잡음 첨가된 화자 모델을 구성한다. 그리고, 화자확인에서는 이렇게 구한 각 모델에 대한 입력 음성의 likelihood를 구해 그 중 가장 큰 likelihood만을 선택한다. 이 값을 이용하여 화자확인을 수행한다. 실험 결과, 제안한 방법은 입력음성의 SNR을 모르는 잡음환경에서 일반적으로 하나의 모델을 사용하는 것보다 훨씬 좋은 성능을 보였다.

  • PDF