이 논문은 학습을 통해 관측 데이터로부터 퍼지 추론 모듈을 생성할 수 있는 적응 능력을 갖는 모듈화 퍼지추론 시스템을 제안한다. 제안한 시스템은 TS 퍼지모델과 모듈화 신경회로망의 구조적 유사성을 기초로 한다. 학습과정은 새로운 퍼지추론 모듈의 생성과 모듈 파라미터의 갱신으로 구성된다. 퍼지추론 모듈은 국부모델망과 퍼지 게이팅망으로 구성된다. 제안한 시스템의 파라미터들은 표준 LMS 알고리즘을 이용하여 최적화된다. 제안한 시스템의 성능은 비선형 동적 시스템 적응제어에의 응용을 통해서 입증된다.
퍼지 제어기(FLC)는 Max-Min CRI 방법을 이용하여 추론하는 시스템이다. 그러나 이 방법은 주관적인 멤버쉽 함수의 결정, 오류 발생 가중치 전략, 비합리적인 추론 규칙들의 조합이라는 세가지 문제점 때문에 원하는 추론 결과와 실제 추론 결과 사이에 상당한 오류 영역을 발생시킨다. 본 논문에서는 이를 해결하기 위해 퍼지 이론에 신경 회로망의 학습 기능이 융합되어 지능적으로 작동하는 뉴로-퍼지 시스템(INFS)을 제안한다. INFS는 이상의 문제 해결 방안이 지식 획득 단계, 적응 조절단계를 통해 작동함으로써 임의의 입력에 대해서도 추론이 가능한 시스템이다. 제안된 INFS를직류 계열 모니터에 적용한 결과 신경 회로망을 사용하지 않았을때 보다 오류 영역을 상당히 줄여주었다. 또한 학습 시간을 고려해 볼 때, INFS에서 사용하는 추론 방법(NCRI 방법)이 지금까지 다른 방법에 비해 휠씬 효율적이었다.
신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시한 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 통합 방법과 두 모델을 동시에 고려하는 병렬적 통합방법을 제안한다. 그러나 두 통합 방법은 선호도 예측 기준에 있어서 정적이고, 문제에 대한 적응성이 없다. 그러므로 신경망(퍼셉트론, 다층 퍼셉트론)을 이용한 통합 방법을 제안한다. 또한 퍼지의 소속함수를 이용하여 퍼지 추론를 적용한 통합 방법을 제안하고, 패턴 인식 분야에서 사용하는 BKS 방법을 적응하여 두 신경망 모델을 통합하여 실험한다. 본 논문에서는 사용자와 항목 신경망 모델을 통합함으로써 기존의 추천 기술인 연관 규칙과 단일 신경망 모델을 이용한 추천보다 우수함을 보이고 있다.
변화할 것으로 예측되고 있는 기후환경에서 현재 수공구조물의 적응능력을 평가하고 지속가능한 시스템을 만들고자 하는 것은 최근의 수자원 관리의 핵심이다. 본 연구에서는 한강수계 5개의 댐을 대상으로 다양한 유입량에 따른 방류량 및 저류량의 변화를 퍼지 추론 시스템을 이용하여 분석하였다. 유입량의 변화에 대한 최대 저류량 및 최소 저류량의 변화를 저수지의 적응능력이라 정의하여 분석한 결과, 저류용량이 상대적으로 작은 광동댐은 유입량의 급격한 증가를 감당하기 어려우며, 소양강댐은 강우량 변화에 대한 적응능력이 가장 뛰어난 것으로 판단되었다. 그러나 퍼지 추론 시스템은 소속함수를 임의로 지정하고, 과거 자료를 이용하여 검증하기가 용이하지 않으므로, 보다 정확하고 효율적인 모의를 위해 소양강댐을 대상으로 적응 신경망-퍼지추론 시스템을 구축하여 적응능력을 평가하였다. 과거 자료의 빈도분석 결과와 기후변화 시나리오를 바탕으로 구축된 9개의 강우 시나리오에 대해 소양강댐의 방류량 및 저류량을 모의한 결과, 유입 시나리오에 따라 매우 상이한 저수지 운영결과를 나타냄을 알 수 있으며, 적응 신경망-퍼지 추론 시스템이 변화하는 강우량과 패턴에도 불구하고 안정적으로 저수지를 운영함을 알 수 있었다.
본 논문에서는 적웅형 신경망-퍼지 추론(ANFlS) 방법을 이용해 가스터빈의 각 변수 변화에 대해 가장 최적으로 제어 될 수 있는 전달함수를 구하고 또 2자유도 Pill제어기를 튜닝하는 문제를 연구하였다. 적응형 신경망-퍼지 추론(ANFlS)법은 기존의 퍼지나 신경망에 비해 플랜트 특성에 따라 소속함수의 모양을 적절하게 가변하면서 학습 할 수 있어 변수가 급격히 변하는 플랜트 제어에서 매우 효과적인 방법이다. 한편 가스터빈의 기동시간은 매우 짧고 제어변수도 많아 최적 기동을 위해서는 기동순간마다 제어변수 값을 가변시켜야 하나 실질적으로 이에 적합한 제어기를 설계하는 것은 매우 어렵다. 따라서 본 연구에서는 실용적인 지능형 제어기를 연구하기 위해 적웅형 신경망 퍼지 추론법을 군산 가스터빈 의 실제 운전 데이터에 적용하여 특성을 확인한 후 2자유도 Pill 제어기를 적용하여 튜닝하였다. 그 결과 적웅형 신경망올 이용한 결과가 기폰의 Pill 제어기에 비해 우수함을 나타내었다 본 연구는 실제 운전되는 가스터빈의 데이터를 이용해 특성을 고찰한 것이므로 다른 유사한 프로세스에도 유용하게 활용 할 수 있을 것으로 기대된다.
최근 들어 그 심각성을 더하고 있는 이상기후 현상으로 가용 수자원의 변동이 커지고 있으며, 이에 따라 수자원의 효율적인 운영이 요구되고 있다. 그러나 효율적인 운영을 위해서는 미래 유입량의 불확실성의 고려하고, 홍수 조절용량의 확보하면서도, 용수공급을 위한 저수량을 확보하고, 수력 발전을 해야 하는 복잡한 상황을 모두 고려하여야한다. 이러한 복잡한 시스템에서 하나의 최적화 기법으로는 모든 고려사항들을 만족시키는 최적해를 찾는 것은 사실상 불가능에 가깝다. 그러므로 저수지 운영의 최적화를 위한 연구에서 한 가지 이상의 기법을 조합하는 기법을 사용하게 되었다. 이러한 기법은 각 기법의 장점을 취하고 각각의 한계를 극복하기 위해 주로 사용되었다. 본 연구에서는 저수지 운영 최적화를 모의하기 위하여 대청댐에서의 저수위, 유입량, 용수이용량 등을 고려하여 방류량의 예측을 동적 계획법(Dynamic Programming Model)으로부터 동적 신경망(Dynamic Neural Network Model)과 적응 퍼지 제어기법(Adaptive Neuro-Fuzzy Inference System)을 개발하여 실제 방류량과 세 가지 최적화 방법에 의한 결과를 비교 검정하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 동적 신경망과 적응 퍼지 제어기법에 의한 최적화 모의가 동적 계획법에 비해 시스템의 구축이 쉽고 유연하다. 둘째, 퍼지추론의 Membership 함수의 구축에 따라 단시간에 많은 양의 강우가 발생하는 국지성 강우에 대해서도 최적 방류량을 예측할 수 있다. 셋째, 저수지 운영 과거자료의 부족과 불확실성을 해결하면, 보다 용이하고 양호한 예측결과를 얻을 수 있을 것이다.
이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.
수치와 언어적 데이터를 조합한 퍼지 추론은 적응 필터 알고리듬에서 적용되어 왔다. 적응 IIR필터 설계에서 퍼지 전치필터는 퍼지의 Sugeno의 방법을 사용하였으며 소속함수와 추론규칙은 정확성을 개선할 수 있도록 신경망을 통하여 각각 생성하였다. 제안된 알고리듬은 성능평가를 위하여 시스템 식별에 적용하고 필터의 파라미터의 추정특성과 수렴속도에 대하여 성능을 평가하였다. 이와 같은 실험결과 직접구조에서 기존의 알고리듬의 수렴속도보다 우수한 성능을 보였으며 제안된 방법이 안정성 및 국부최소 점에 대한 문제를 극복할 수 있음을 보였다.
본 연구의 목적은 적응신경망퍼지추론시스템(ANFIS)과 회귀분석을 활용하여 7가지 역학적 특성치를 갖는 면직물의 시각적 질감을 해석하고 두 가지 방법을 비교하는 것이다. AMFIS는 퍼지 소속 함수와 신경망 구조를 갖는 것으로 인간의 비선형적 감성예측에 유용한 도구이다. 상관관계 및 회귀 분석의 통계분석은 7가지 역학적 특성치가 주관적 질감과 선형의 관계가 있음을 나타내었지만 설명력이 높지 않았고, 선형 이외의 관련성과 변수들 간의 상호작용을 표현하기 어려운 문제가 있었다. 통계분석과 비교하여, ANFIS는 변수들 간의 비선형적인 관련성과 상호작용을 가시적으로 보여주는데 설명력 있는 유용한 도구였으나, 입력 변수 중 출력 변수에 영향력이 있는 변수를 변별하지 못하여, 생성된 규칙의 수가 복잡한 문제가 있었다. 따라서 ANFIS의 해석이 단순하고 의미있는 모델을 구성하기 위해서는 영향력 있는 출력 변수를 추출하고 나머지 변수를 유사하게 통제하는 실험 모델의 구성이 필요하다.
이 논문에서는 퍼지뉴럴 시스템을 위하여 measure of fuzziness에 의한 입력공간의 분할을 최적화하는 방법을 제안한다. 이에 따라 최적화된 퍼지 부공간에 대하여 퍼지 제어규칙을 자동으로 생성하는 방법을 제안한다. 또한 시계열 예측 문제에서 입력패턴의 간격을 조정하여 그 성능을 검증한다. 이 방법은 샤논 함수와 index of fuzziness를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 입력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안된 알고리즘을 토대로 여덟 가지의 입력패턴에 대하여 추론한 결과 입력공간의 최적분할에 의하여 수렴과정에서 초기에 오차(RMSE)가 빠르게 수렴함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.