• 제목/요약/키워드: 적응 신경망 퍼지 추론 시스템

검색결과 16건 처리시간 0.023초

비선형 시스템 제어를 위한 모듈화 피지추론 시스템 (Modular Fuzzy Inference Systems for Nonlinear System Control)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.395-399
    • /
    • 2001
  • 이 논문은 학습을 통해 관측 데이터로부터 퍼지 추론 모듈을 생성할 수 있는 적응 능력을 갖는 모듈화 퍼지추론 시스템을 제안한다. 제안한 시스템은 TS 퍼지모델과 모듈화 신경회로망의 구조적 유사성을 기초로 한다. 학습과정은 새로운 퍼지추론 모듈의 생성과 모듈 파라미터의 갱신으로 구성된다. 퍼지추론 모듈은 국부모델망과 퍼지 게이팅망으로 구성된다. 제안한 시스템의 파라미터들은 표준 LMS 알고리즘을 이용하여 최적화된다. 제안한 시스템의 성능은 비선형 동적 시스템 적응제어에의 응용을 통해서 입증된다.

  • PDF

효율적인 뉴로-퍼지 시스템의 설계 방법론 (The Design Methodology of An Efficinet Neuro-Fuzzy Stysem)

  • 조영임;황종선
    • 한국지능시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.38-54
    • /
    • 1993
  • 퍼지 제어기(FLC)는 Max-Min CRI 방법을 이용하여 추론하는 시스템이다. 그러나 이 방법은 주관적인 멤버쉽 함수의 결정, 오류 발생 가중치 전략, 비합리적인 추론 규칙들의 조합이라는 세가지 문제점 때문에 원하는 추론 결과와 실제 추론 결과 사이에 상당한 오류 영역을 발생시킨다. 본 논문에서는 이를 해결하기 위해 퍼지 이론에 신경 회로망의 학습 기능이 융합되어 지능적으로 작동하는 뉴로-퍼지 시스템(INFS)을 제안한다. INFS는 이상의 문제 해결 방안이 지식 획득 단계, 적응 조절단계를 통해 작동함으로써 임의의 입력에 대해서도 추론이 가능한 시스템이다. 제안된 INFS를직류 계열 모니터에 적용한 결과 신경 회로망을 사용하지 않았을때 보다 오류 영역을 상당히 줄여주었다. 또한 학습 시간을 고려해 볼 때, INFS에서 사용하는 추론 방법(NCRI 방법)이 지금까지 다른 방법에 비해 휠씬 효율적이었다.

  • PDF

협력적 추천을 위한 효율적인 통합 방법 (Efficient Combining Methods for a Collaborative Recommendation)

  • 도영아;김종수;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.130-132
    • /
    • 2001
  • 신경망을 이용한 추천 기술은 항목이나 사용자간의 가중치를 학습할 수 있고, 자료 유형에 상관없이 데이터 처리가 용이하다. 또한 최근 연구를 통해서 그 우수성이 입증되고 있다. 그러나 사용자간의 상관관계로 추천하는 사용자 신경망 모델과 항목간의 상관관계로 추천하는 항목 신경망 모델이 서로 다른 관점으로 다른 선호도를 제시한 경우에 선택한 모델의 선호도에 따라 시스템의 성능이 좌우된다. 그러므로 효율적이고 성능이 우수한 추천 시스템을 위해 사용자와 항목 신경망 모델의 통합 방법을 제안한다. 두 모델 사이에 우선 순위를 결정하여 통합하는 순차적 통합 방법과 두 모델을 동시에 고려하는 병렬적 통합방법을 제안한다. 그러나 두 통합 방법은 선호도 예측 기준에 있어서 정적이고, 문제에 대한 적응성이 없다. 그러므로 신경망(퍼셉트론, 다층 퍼셉트론)을 이용한 통합 방법을 제안한다. 또한 퍼지의 소속함수를 이용하여 퍼지 추론를 적용한 통합 방법을 제안하고, 패턴 인식 분야에서 사용하는 BKS 방법을 적응하여 두 신경망 모델을 통합하여 실험한다. 본 논문에서는 사용자와 항목 신경망 모델을 통합함으로써 기존의 추천 기술인 연관 규칙과 단일 신경망 모델을 이용한 추천보다 우수함을 보이고 있다.

  • PDF

기후변화를 고려한 한강유역 저수지의 적응능력 평가 (Adaptation Capability of Reservoirs Considering Climate Change in the Han River Basin, South Korea)

  • 정건희;전면호;김형수;김태웅
    • 대한토목학회논문집
    • /
    • 제31권5B호
    • /
    • pp.439-447
    • /
    • 2011
  • 변화할 것으로 예측되고 있는 기후환경에서 현재 수공구조물의 적응능력을 평가하고 지속가능한 시스템을 만들고자 하는 것은 최근의 수자원 관리의 핵심이다. 본 연구에서는 한강수계 5개의 댐을 대상으로 다양한 유입량에 따른 방류량 및 저류량의 변화를 퍼지 추론 시스템을 이용하여 분석하였다. 유입량의 변화에 대한 최대 저류량 및 최소 저류량의 변화를 저수지의 적응능력이라 정의하여 분석한 결과, 저류용량이 상대적으로 작은 광동댐은 유입량의 급격한 증가를 감당하기 어려우며, 소양강댐은 강우량 변화에 대한 적응능력이 가장 뛰어난 것으로 판단되었다. 그러나 퍼지 추론 시스템은 소속함수를 임의로 지정하고, 과거 자료를 이용하여 검증하기가 용이하지 않으므로, 보다 정확하고 효율적인 모의를 위해 소양강댐을 대상으로 적응 신경망-퍼지추론 시스템을 구축하여 적응능력을 평가하였다. 과거 자료의 빈도분석 결과와 기후변화 시나리오를 바탕으로 구축된 9개의 강우 시나리오에 대해 소양강댐의 방류량 및 저류량을 모의한 결과, 유입 시나리오에 따라 매우 상이한 저수지 운영결과를 나타냄을 알 수 있으며, 적응 신경망-퍼지 추론 시스템이 변화하는 강우량과 패턴에도 불구하고 안정적으로 저수지를 운영함을 알 수 있었다.

적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝 (Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS)

  • 김동화
    • 조명전기설비학회논문지
    • /
    • 제14권1호
    • /
    • pp.30-37
    • /
    • 2000
  • 본 논문에서는 적웅형 신경망-퍼지 추론(ANFlS) 방법을 이용해 가스터빈의 각 변수 변화에 대해 가장 최적으로 제어 될 수 있는 전달함수를 구하고 또 2자유도 Pill제어기를 튜닝하는 문제를 연구하였다. 적응형 신경망-퍼지 추론(ANFlS)법은 기존의 퍼지나 신경망에 비해 플랜트 특성에 따라 소속함수의 모양을 적절하게 가변하면서 학습 할 수 있어 변수가 급격히 변하는 플랜트 제어에서 매우 효과적인 방법이다. 한편 가스터빈의 기동시간은 매우 짧고 제어변수도 많아 최적 기동을 위해서는 기동순간마다 제어변수 값을 가변시켜야 하나 실질적으로 이에 적합한 제어기를 설계하는 것은 매우 어렵다. 따라서 본 연구에서는 실용적인 지능형 제어기를 연구하기 위해 적웅형 신경망 퍼지 추론법을 군산 가스터빈 의 실제 운전 데이터에 적용하여 특성을 확인한 후 2자유도 Pill 제어기를 적용하여 튜닝하였다. 그 결과 적웅형 신경망올 이용한 결과가 기폰의 Pill 제어기에 비해 우수함을 나타내었다 본 연구는 실제 운전되는 가스터빈의 데이터를 이용해 특성을 고찰한 것이므로 다른 유사한 프로세스에도 유용하게 활용 할 수 있을 것으로 기대된다.

  • PDF

적응 퍼지 제어기법을 이용한 저수지 운영 최적화 (Optimal Reservoir Operation using Adaptive Neuro-Fuzzy Inference System)

  • 김진호;정건희;이도훈;이은태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.779-783
    • /
    • 2010
  • 최근 들어 그 심각성을 더하고 있는 이상기후 현상으로 가용 수자원의 변동이 커지고 있으며, 이에 따라 수자원의 효율적인 운영이 요구되고 있다. 그러나 효율적인 운영을 위해서는 미래 유입량의 불확실성의 고려하고, 홍수 조절용량의 확보하면서도, 용수공급을 위한 저수량을 확보하고, 수력 발전을 해야 하는 복잡한 상황을 모두 고려하여야한다. 이러한 복잡한 시스템에서 하나의 최적화 기법으로는 모든 고려사항들을 만족시키는 최적해를 찾는 것은 사실상 불가능에 가깝다. 그러므로 저수지 운영의 최적화를 위한 연구에서 한 가지 이상의 기법을 조합하는 기법을 사용하게 되었다. 이러한 기법은 각 기법의 장점을 취하고 각각의 한계를 극복하기 위해 주로 사용되었다. 본 연구에서는 저수지 운영 최적화를 모의하기 위하여 대청댐에서의 저수위, 유입량, 용수이용량 등을 고려하여 방류량의 예측을 동적 계획법(Dynamic Programming Model)으로부터 동적 신경망(Dynamic Neural Network Model)과 적응 퍼지 제어기법(Adaptive Neuro-Fuzzy Inference System)을 개발하여 실제 방류량과 세 가지 최적화 방법에 의한 결과를 비교 검정하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 동적 신경망과 적응 퍼지 제어기법에 의한 최적화 모의가 동적 계획법에 비해 시스템의 구축이 쉽고 유연하다. 둘째, 퍼지추론의 Membership 함수의 구축에 따라 단시간에 많은 양의 강우가 발생하는 국지성 강우에 대해서도 최적 방류량을 예측할 수 있다. 셋째, 저수지 운영 과거자료의 부족과 불확실성을 해결하면, 보다 용이하고 양호한 예측결과를 얻을 수 있을 것이다.

  • PDF

퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링 (Fuzzy Neural System Modeling using Fuzzy Entropy)

  • 박인규
    • 한국멀티미디어학회논문지
    • /
    • 제3권2호
    • /
    • pp.201-208
    • /
    • 2000
  • 이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

  • PDF

직접형 퍼지 적응 IIR 필터의 설계 (Design of Fuzzy Adaptive IIR Filter in Direct Form)

  • 유근택;배현덕
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.370-378
    • /
    • 2002
  • 수치와 언어적 데이터를 조합한 퍼지 추론은 적응 필터 알고리듬에서 적용되어 왔다. 적응 IIR필터 설계에서 퍼지 전치필터는 퍼지의 Sugeno의 방법을 사용하였으며 소속함수와 추론규칙은 정확성을 개선할 수 있도록 신경망을 통하여 각각 생성하였다. 제안된 알고리듬은 성능평가를 위하여 시스템 식별에 적용하고 필터의 파라미터의 추정특성과 수렴속도에 대하여 성능을 평가하였다. 이와 같은 실험결과 직접구조에서 기존의 알고리듬의 수렴속도보다 우수한 성능을 보였으며 제안된 방법이 안정성 및 국부최소 점에 대한 문제를 극복할 수 있음을 보였다.

회귀분석과 ANFIS를 활용한 면직물의 시각적 질감에 대한 해석 비교 - 온난감을 중심으로 (Comparison of the Explanation on Visual Texture of Cotton Textiles using Regression Analysis and ANFIS - on Warmness)

  • 주정아;유효선
    • 감성과학
    • /
    • 제7권3호
    • /
    • pp.15-25
    • /
    • 2004
  • 본 연구의 목적은 적응신경망퍼지추론시스템(ANFIS)과 회귀분석을 활용하여 7가지 역학적 특성치를 갖는 면직물의 시각적 질감을 해석하고 두 가지 방법을 비교하는 것이다. AMFIS는 퍼지 소속 함수와 신경망 구조를 갖는 것으로 인간의 비선형적 감성예측에 유용한 도구이다. 상관관계 및 회귀 분석의 통계분석은 7가지 역학적 특성치가 주관적 질감과 선형의 관계가 있음을 나타내었지만 설명력이 높지 않았고, 선형 이외의 관련성과 변수들 간의 상호작용을 표현하기 어려운 문제가 있었다. 통계분석과 비교하여, ANFIS는 변수들 간의 비선형적인 관련성과 상호작용을 가시적으로 보여주는데 설명력 있는 유용한 도구였으나, 입력 변수 중 출력 변수에 영향력이 있는 변수를 변별하지 못하여, 생성된 규칙의 수가 복잡한 문제가 있었다. 따라서 ANFIS의 해석이 단순하고 의미있는 모델을 구성하기 위해서는 영향력 있는 출력 변수를 추출하고 나머지 변수를 유사하게 통제하는 실험 모델의 구성이 필요하다.

  • PDF

퍼지뉴럴 시스템을 위한 초기 입력공간분할의 최적화 : Measure of Fuzziness (The Optimal Partition of Initial Input Space for Fuzzy Neural System : Measure of Fuzziness)

  • 백덕수;박인규
    • 대한전자공학회논문지TE
    • /
    • 제39권3호
    • /
    • pp.97-104
    • /
    • 2002
  • 이 논문에서는 퍼지뉴럴 시스템을 위하여 measure of fuzziness에 의한 입력공간의 분할을 최적화하는 방법을 제안한다. 이에 따라 최적화된 퍼지 부공간에 대하여 퍼지 제어규칙을 자동으로 생성하는 방법을 제안한다. 또한 시계열 예측 문제에서 입력패턴의 간격을 조정하여 그 성능을 검증한다. 이 방법은 샤논 함수와 index of fuzziness를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 입력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안된 알고리즘을 토대로 여덟 가지의 입력패턴에 대하여 추론한 결과 입력공간의 최적분할에 의하여 수렴과정에서 초기에 오차(RMSE)가 빠르게 수렴함을 알 수 있었다.