• Title/Summary/Keyword: 최대주응력-수명곡선

Search Result 1, Processing Time 0.016 seconds

A study on the Fatigue Life Prediction Method of the Spot-welded Lap Joint (점용접이음재의 피로수명 예측기법에 관한 연구)

  • 손일선;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.110-118
    • /
    • 2000
  • For reasonable fatigue design and estimation of fatigue durability considered fatigue strength and stiffness of the automotive body structure, many fatigue data must be insured according to the shapes, materials, and welding conditions of the spot welded lap joints. However, because it is actually difficult problem, there is need to establish a new method to be able to predict its fatigue life without any additional fatigue tests. Therefore, In order to improve such problems, in this study, the maximum stress function presenting the $\delta\sigma_{1max}―\delta P$ relation was defined form the relation between $\delta\sigma_{1max}-N_f$ and ${\delta}P-N_f$. By using the fatigue data on the IB type spot-welded lap joints previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint previously obtained from the fatigue test results, fatigue life of the spot-welded lap joint having a certain dimension was tried to predict without any additional fatigue tests. And, its result was verified by ${\delta}P-$N_f$ curves. Obtained conclusion are as follows, 1) a maximum stress function considered the relation of the maximum principal stress, fatigue load, and the effects of geometrical factors of the IB type spot-welded lap joint was suggested. 2) the fatigue life predicted by the maximum principal stress function and the relation of $\delta\sigma_{1max}-N_f$ was well agreed with the fatigue life obtained through the actual fatigue test result. 3) the fatigue life of the IB type spot-welded lap joint having a certain dimension is able to be predicted without any additional fatigue tests from the fatigue life prediction method by the maximum principal stress function.

  • PDF