• Title, Summary, Keyword: 최적화 알고리즘

Search Result 3,166, Processing Time 0.046 seconds

A Hybrid Genetic Algorithm for Solving Nonlinear Optimization Problems (비선형 최적화문제 해결을 위한 혼합유전알고리즘)

  • 윤영수;문치웅;이상용
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.11-22
    • /
    • 1997
  • 본 연구에서는 비선형 최적화 문제를 효율적으로 해결하기 위한 혼합유전알고리즘(Hybrid Genetic Algorthm : HGA)을 개발하였다. HGA는 기존 유전알고리즘의 적용에 있어 문제점으로 지적된 정밀도의 적용문제와 벌금함수의 사용을 배제하였으며 지역적최적점으로 빠르게 수렴하는 기존의 지역적 탐색법과 유전알고리즘 적용이후 수렴된 해 주변에 대한 정밀탐색법을 함께 고려하여 설계하였으며 이를 세가지의 비선형 최적화 문제 적용하여 본 논문에서 개발한 HGA의 유효성을 보였다.

  • PDF

Optimum Operation of Water Budget Analysis Using Genetic Algorithms (유전자 알고리즘을 이용한 물수지 분석의 최적화 방안)

  • Keum, Do-Hun;Kim, Sung-Bum;Ko, Jin-Seok;Choi, Eun-Hyuk;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.1588-1591
    • /
    • 2007
  • 산업화와 도시화에 따라 용수사용량이 증가되면서 용수부족이 나타나기 시작하였다. 용수부족을 보다 효율적이며 경제적으로 용수수급계획을 하기 위한 관심이 고조되고 있다. 물수지 분석의 최적화기법을 연구하기 위하여 새로운 기법으로 부각되고 있는 유전자 알고리즘을 적용하였다. 본 연구에서는 물수지 분석 중 하나인 저수지 모의운영 방법을 사용하였으며 대상지역으로는 낙동강 유역인 임하댐을 중심으로 모의를 하였으며 실제 유입량 자료와 유입량 예측기법을 이용하여 최적화를 수행하였다. 최적화 모형의 구성은 임하댐을 상태로 하는 모형을 구성하였고, 목적함수는 저수지 모의기법에서 설정한 말기저수위를 우선적으로 만족시키고, 임하댐의 용수공급량을 만족시키는 것으로 구성하였다. 유전자 알고리즘을 이용한 물수지 분석의 최적화 방안을 실행하였는데 이러한 방법을 통하여서 보다 나은 용수수급계획을 할 수 있을 것이라 기대된다.

  • PDF

The Optimum Design of Truss Dome Structures by Evolution Strategy (진화전략을 이용한 트러스 돔 구조물의 최적설계)

  • Han, Sang-Eul;Kim, Man-Jung;Lee, Jae-Young;Ryu, Ji-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.396-399
    • /
    • 2009
  • 본 논문의 연구 목적은 생물의 진화 현상을 모방한 진화전략 알고리즘을 이용하여 돔형 트러스 구조물을 최적화 설계하는 것이다. 최적화 방법으로 부재 단면적의 최적화 값을 찾음으로써 최적 목적값 또는 최소 구조물 중량을 산출하는데 목적이 있다. 진화전략 알고리즘은 1960년대 중반, 실수기반 매개변수의 최적화로부터 소개되어 1970년대 많은 발전을 하였다. 진화전략은 컴퓨터 시스템 최적화 알고리즘 연구분야에서 많이 활용되며, 더불어 사용되는 유전자 알고리즘과는 다른 몇 개의 연산자를 가지고 있다. 본 논문에서는 진화전략에서 사용되는 연산자를 소개하고 연산자간의 논리 흐름과 수치예제로써 최적설계의 적합성을 확인해볼 수 있다.

  • PDF

Hybrid Optimization Algorithm based on the Interface of a Sequential Linear Approximation Method and a Genetic Algorithm (순차적 선형화 기법과 유전자 알고리즘을 접속한 하이브리드형 최적화 알고리즘)

  • Lee, Kyung-Ho;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.93-101
    • /
    • 1997
  • Generally the traditional optimization methods have possibilities not only to give a different optimum value according to their starting point, but also to get to local optima. On the other hand, Genetic Algorithm (GA) has an ability of robust global search. In this paper, a new optimization method - the combination of traditional optimization method and genetic algorithm - is presented so as to overcome the above disadvantage of traditional methods. In order to increase the efficiency of the hybrid optimization method, a knowledge-based reasoning is adopted in the part of mathematical modeling, algorithm selection, and process control. The validation of the developed knowledge-based hybrid optimization method was examined and verified applying the method to nonlinear mathematical models.

  • PDF

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Optimizing the bio-optical algorithm for quantifying Chlorophyll-a and Phycocyanin in inland water, Korea (대한민국 담수계의 클로로필a와 피코시아닌 정량화를 위한 분광알고리즘 최적화 연구)

  • Pyo, JongCheol;Pachepsky, Yakov;Lee, Hyuk;Park, Yongeun;Cho, Kyung Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.101-101
    • /
    • 2017
  • 근래에 대한민국 담수계에 조류 대발생으로 인한 수질악화 문재가 대두되고 있다. 또한 독성물질을 생성하는 남조류종이 우점하는 현상으로인해 수질문제와더불에 생태계와 인간의 건강도 잠재적인 위험을 받고있는 실정이다. 이와같은 조류 대발생으로인한 피해를 최소화하기위해 효과적인 수질관리가 필수적이다. 원격탐사기술은 조류의 공간적인 분포를 해석하고 농도를 정량화하기위해 이용되고 있다. 현재까지 많은 분광알고리즘들이 개발되어 담수유역에 적용이 되고 있다. 수체마다 다른 분광특성 때문에 알고리즘내의 파라미터 및 분광밴드 조정이 필수적이다. 하지만 대부분의 연구에선 파라미터와 밴드의 변경에 따른 결과향상에만 초점이 맞춰지고 있어 분광알고리즘내의 파라미터와 분광밴드사이의 관계 이해 뿐만아니라 알고리즘 최종 산출물에 대한 영향에 관한 설명이 전무한 실정이다. 본 연구에선, 대한민국 백제보를 대상으로 현장모니터링 및 조류추출 실험을 진행하였고, 이를 기반으로 5가지 클로로필a 알고리즘과 2가지 피코시아닌 알고리즘을 구축하였다. 알고리즘내에서 변수들의 관계와 영향을 알아보기위해 민감도 분석을 실시하였다. 민감도 분석 조건을 기반으로 one-objective 최적화 및 multi-objective 최적화를 실시하여 백제보수계를 대표할 수 있는 최적 변수들을 모의하였다. 민감도 분석결과 후방산란계수에 영향을 미치는 파라미터와 조류 생체량에 영향을 미치는 파라미터가 다른 변수들 및 알고리즘 농도산정결과에 가장 민감한 것으로 나타났다. multi-objective 최적화 결과가 one-objective 결과 및 reference 결과보다 대부분 정확도가 향상되었고 흡광도 계수를 함께 고려할 수 있기 때문에 백제보 수계의 분광특성을 함께 고려하여 대표할 수 있는 장점을 가지는 것으로 나타났다. 따라서, 본 연구는 민감도 분석을 활용하여 분광알고리즘 내의 변수들의 이해를 도모하였고, 최적화 기법 중, multi-objective 최적화 기법이 백제보의 분광특성을 대변하는 최적변수를 제시할 수 있음과 동시에 보다 나은 정확성을 제고할 수 있음을 확인하였다.

  • PDF

SMGA: A New Coevolutionary Algorithm based on Species Splitting and Merging (분할과 병합을 이용한 새로운 공진화 알고리즘 - SMGA)

  • 박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.307-309
    • /
    • 2000
  • 진화 알고리즘은 현재까지 다양한 최적화 문제들에 사용되어 왔고, 또한 이러한 최적화 문제들은 효율적으로 해결하기 위하여 많은 진화 알고리즘이 개발되어 왔다. 그러나 이러한 진화 알고리즘들의 공통적인 문제점은 탐색공간의 확대에 대하여 전반적으로 탐색시간이 오래 걸린다는 것이다. 실제로 최적화 해야 할 변수의 증가에 따라 탐색 차원이 증가하므로 탐색 시간도 기하급수적으로 늘어난다. 따라서 최근의 진화 알고리즘에 대한 연구는 탐색공간의 축소나, 진화 속도의 향상에 초점이 맞추어져 있었고, 이러한 경향에 따라 많은 연구성과가 있었다. Potter와 Dejong의 협력 공진화와, Weicker의 적응적 공진화가 바로 그것이다. 그러나 이 방법들도 최적화 해야 할 변수들이 서로 강한 의존성을 가지고 있는 경우나, 대부분의 변수가 서로 의존성을 가지고 있는 경우에는 그다지 좋은 결과를 보이지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 연구들을 기반으로 하여 각 방법의 단점들을 보완함으로써 효율을 향상시킨 새로운 진화 알고리즘을 제안한다.

  • PDF

An Optimal Filter Design for System Identification with GA (GA를 이용한 시스템 동정용 필터계수 최적화)

  • Song, Young-Jun;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2833-2835
    • /
    • 1999
  • 이 논문에서는 임의의 시스템 동정에 사용되는 적응필터의 계수를 최적화시키는 방법으로 광범위하게 사용되어지고 있는 기존의 적응 알고리즘인 Least Mean Square(LMS)방법과 최근들어 다양한 최적화 문제에 응용되고 있는 유전자 알고리즘(GA)을 합성한 하이브리드 형태의 적응 알고리즘을 사용한다. 이 알고리즘은 TIR 필터를 설계하는데 있어, 경사하강법의 개념을 사용함으로써 야기되는 지역 수렴문제의 단점을 보완하기 위해, 미분과 같은 결정론적인 규칙없이 단지 확률적인 연산자만으로 진행하는 유전자 알고리즘을 이용한다. 그리고 유전자 알고리즘에 있어서 확률적인 연산을 사용함으로써 발생하는 많은 계산량과 느린 수렴속도 문제를 LMS의 경사하강법을 이용하여 보완한다. 이처럼 유전자 알고리즘이 지닌 장점과 LMS 알고리즘이 갖는 장점을 이용하여 각 알고리즘이 지니는 단점을 서로 보완함으로써 알고리즘의 성능을 향상시키고 이 향상된 알고리즘을 이용하여 최적 필터계수를 찾는다 이렇게 얻은 필터계수값을 이용하여 적응 필터의 성능을 확인 평가한다.

  • PDF

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.491-496
    • /
    • 2002
  • Multi-objective Optimization Problems(MOPs) are occur more frequently than generally thought when we try to solve engineering problems. In the real world, the majority cases of optimization problems are the problems composed of several competitive objective functions. In this paper, we introduce the definition of MOPs and several approaches to solve these problems. In the introduction, established optimization algorithms based on the concept of Pareto optimal solution are introduced. And contrary these algorithms, we introduce theoretical backgrounds of Nash Genetic Algorithm(Nash GA) and Evolutionary Stable Strategy(ESS), which is the basis of Co-evolutionary algorithm proposed in this paper. In the next chapter, we introduce the definitions of MOPs and Pareto optimal solution. And the architecture of Nash GA and Co-evolutionary algorithm for solving MOPs are following. Finally from the experimental results we confirm that two algorithms based on Evolutionary Game Theory(EGT) which are Nash GA and Co-evolutionary algorithm can search optimal solutions of MOPs.

An optimum design of a ship based on numeric and knowledge processing (지식처리기법에 의한 선박의 주요 치수 최적화)

  • Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.227-238
    • /
    • 1997
  • 다목적함수 최적화를 효과적으로 수행하기 위하여 유전자 알고리즘과 직접탐색법을 결합하여 혼성형 최적화기법을 구현하였다. 이 방법은 유전자 알고리즘을 사용하여 최적점이 존재할 가능성이 높은 영역을 탐색한 후, 이 영역에서 직접탐색법을 사용하여 최종해를 찾는다. 따라서 탐색의 효율을 향상시키고 계산시간을 절약할 수 있는 장점이 있다. 그러나 최적화기법이 효율적이지만, 최적화기법을 사용하기 위해서는 전문가의 전문지식이 필요하다. 따라서 실제 최적화를 수행하기 위해서는 관련 분야의 전문지식과 최적화기법이 효율적으로 결합되는 것이 필요하다.

  • PDF