• Title/Summary/Keyword: 충진 공정

Search Result 13, Processing Time 0.305 seconds

Boots Gap Liner Casting Process Development of Solid Rocket Motor (고체 추진기관 적용 부츠갭 라이너 충진 공정 개발)

  • Kim, Yong-Woon;Kim, Jin-Yong;Lee, Won-Bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.211-214
    • /
    • 2007
  • Solid rocket motor that includes AL powder in propellant gets slag during static firing test. Slag is piled up to weak area in motor case and causes dangerous phenomena like explosion of motor. In this paper, It is shown that boots gap liner casting process was developed and static firing test was performed with better results.

  • PDF

Development and Selection of Accident Scenarios for Risk Assessment in HF Charging Process (HF 충진 공정의 위험성 평가를 위한 가상사고 시나리오 발굴 및 선정)

  • Jang, Chang-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • The best way to prevent major occupational accidents is prohibiting use of hazardous substances such as flammable gas, toxic gas whereas using alternative substances that ensured safety. but if there are no economic efficiency and substituting technologies of alternative substances, the best way is preparing to prevent accidents thoroughly. Therefore, this study has developed and selected release scenarios to use and apply for consequence analysis and emergency action plan for HF charging process of chemical plants that have HF release accidents and high probability of release accidents.

The Manufacturing Technique of Rapid Products using Filling Process (충진공정을 이용한 쾌속시작품 제작 기술)

  • 신보성;최두선;이응숙;이종현;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.767-770
    • /
    • 2000
  • In order to reduce lean-time and cost, recently the technology of Rapid Prototyping and Manufacturing(PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. The machining process is one of these methods. It also offers advantages such as precision and versatility. But there are some considerations during machining. The most important problem among them is the fixturing. So we have to overcome the limitation because the fixturing time is depend on the complexity of geometry to be machined. In this paper, we have developed the fixturing technique using filling process that can be widely useful for rapid products within a short time. So we have carried out some kinds of rapid products such as plastic knob and metal fan using our fixturing process. In fixturing step, the filling material might chosen a resin or a alloy according to wether the work material is plastic or metal respectively. Also we developed the set-up equipment attachable on the table of the milling machine that provided practicable quality during a series of machining operations, named by two step milling process.

  • PDF

Through-Si-Via(TSV) Filling of Cu with Single Additive (단일 첨가제를 이용한 관통 실리콘 비아의 구리 충진 공정 연구)

  • Jin, Sang-Hyeon;Seo, Seong-Ho;Park, Sang-U;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • /
    • pp.191-191
    • /
    • 2015
  • 반도체 소자 성능 향상을 위한 3차원 TSV배선 공정이 연구되었다. 전기도금을 이용한 TSV 공정 시 기존에는 황산 구리 수용액내에 억제제, 가속제, 평탄제등을 첨가한 복잡한 전해질이 사용되었지만 본 연구에서는 억제제만을 이용하여 Cu bottom-up filling에 성공하여 전해질의 조성을 단순화 시켰다.

  • PDF

Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process (고속가공에 의한 쾌속제작용 자동충진 공정개발)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.

Development of Rapid Prototyping System using High Speed Machining of Plastics (합성수지의 고속 절삭을 이용한 쾌속조형 시스템)

  • Jung, Tae-Sung;Choi, In-Hugh;Lee, Dong-Yoon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.5-12
    • /
    • 2003
  • In order to reduce the lead-time and cost, many useful methods have been applied to rapid prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also offers practical advantages in aspects of precision and versatility. However, traditional 3-axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5-axis machining of plastics has been developed to overcome those limitations. And cutting experiments were conducted to determine the design factors of the system and the cutting conditions of plastics. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF

Rapid Manufacturing of Trial Molds and Prototypes by High Speed Machining (고속가공을 이용한 시작금형 및 시작품의 쾌속제작)

  • Sin, Bo-Seong;Yang, Dong-Yeol;Choe, Du-Seon;Je, Tae-Jin;Lee, Eung-Suk;Hwang, Gyeong-Hyeon;Lee, Jong-Hyeon;J. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.124-129
    • /
    • 2001
  • Recently, life cycle and lead-time of products have been shortened with the demand of customers. Therefore, it is important to reduce time and cost at the step of manufacturing trial molds. High speed machining can be applied for this kind of purpose with a lot of practical advantages. In our research, several fundamental experiments are carried out to obtain machining parameters such as cutting force, machining time and surface characteristics for tool paths that are appropriate to high-speed machining. Moreover, a trial mold for an automatic transmission knob is fabricated with aluminum-7075 material. Using automatic set-up equipments, an ABS rapid prototype of a trial product of an AT knob is also manufactured with a filling process.

  • PDF

Rapid Manufacturing of 3D Thin-walled Products using Plastics and Metals (플라스틱과 금속재료를 이용한 3 차원 박벽 제품의 쾌속 제작)

  • Shin Bo-Sung;Kang Bo-Sik;Park Jae-Hyun;Rho Chi-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8
    • /
    • pp.195-202
    • /
    • 2006
  • High-speed machining (HSM) with excellent quality and dimensional accuracy has been widely used to create 3D structures of metal and plastics. However, the high-speed machining process is not suitable for the rapid realization of 3D thin-walled product because it consumes considerably long time in fixturing process of a work piece. In this paper, an effective rapid manufacturing process is proposed to fabricate 3D thin-walled products directly using HSM, phase change filling and ultrasonic welding. The filling process is useful to hold the thin-walled product during the machining step. The ultrasonic welding process is introduced to make one piece product from two piece parts that are machined by HSM and filling process. The proposed rapid manufacturing (RM) process has been shown that the RM process enables to fabricate the 3D thin-walled products using ABS plastics and aluminum metals from 3D CAD data to functional parts.