• Title/Summary/Keyword: %ED%8C%8C%EB%8B%A8

Search Result 1, Processing Time 0.018 seconds

Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation (전자빔 조사에 따른 잿빛곰팡이병원균 방제효과와 절화 장미의 수확 후 품질)

  • Kwon, Song;Choi, Gyung Ja;Kim, Ki Sun;Kwon, Hye Jin
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.507-516
    • /
    • 2014
  • The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition ($ED_{50}$) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at $10^{\circ}C$ than at $20^{\circ}C$. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although 'Decoration', 'Il se Bronze', 'Queen Bee', and 'Revue' roses tolerated and maintained overall postharvest quality up to 0.4 kGy, 'Vivian' did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.