• Title/Summary/Keyword: 회전체 동역학

Search Result 112, Processing Time 0.026 seconds

Validation of Flexible Rotor Model for a Large Capacity Flywheel Energy Storage System (유한요소법을 이용한 대용량 플라이휠 에너지 저장 장치의 연성 회전체 모델의 검증)

  • Yoo, Seong-Yeol;Park, Cheol-Hoon;Choi, Sang-Kyu;Lee, Jeong-Pil;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1096-1101
    • /
    • 2008
  • When we design a controller for the active magnetic bearings that support a large rotor, it is important to have an accurate model of the rotor. For the case of the flywheel that is used to store energy, an accurate rotor model is especially important because the dynamics change with respect to the running speed due to gyroscopic effects. In this paper, we present a procedure of obtaining an accurate rotor model of a large flywheel energy storage system using finite-element method. The model can predict the first and the second bending mode which match well with the experimental results obtained from a prototype flywheel energy storage system.

Experiment Onmodal Balancing of a Flexible Rotor Supported on Fluid Film Bearings (유막 베어링에 지지된 탄성회전체의 모드 밸런싱 실험)

  • 정시영;이동환;김영철;제양규
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.235-246
    • /
    • 1995
  • Experiment on the modal balancing of a flexible rotor supported on two kinds of fluid film bearings is performed to verify the modal balancing theory. The fluid film bearings are a tilting pad bearing and a two axial grooved journal bearing. One is inherently stable, but the other is not. The experimental result shows that the modal balancing method is effective for balancing of a high speed flexible rotor system. Besides, the critical speeds and mode shapes measured experimentally are in good coincidence with the results of rotordynamic analysis. Oil whip, which is the instability phenomenon due to fluid film force, is also observed during the experiment.

  • PDF

Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System (250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석)

  • Lee, Donghyun;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

Critical Speed Analysis of a 75 Ton Class Liquid Rocket Engine Turbopump due to Load Characteristics (75톤급 액체로켓엔진 터보펌프의 하중 특성에 따른 임계속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Hong, Soon-Sam;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.22-29
    • /
    • 2011
  • Critical speed of high thrust liquid rocket engine turbopump is obtained through a rotordynamic analysis and a unloaded turbopump test is peformed for validation of the numerical model. The first critical speed predicted by the numerical analysis is correlated well with the test result for the bearing unloaded rotor condition only considering mass unbalance load. Using the previous rotordynamic model, critical speed variation is estimated as a function of varied bearing stiffness due to pump and turbine radial loads with relative angle difference. From the numerical analysis, it is found that the relative angle difference of pump and turbine radial loads greatly affects the critical speed. However, additional axial load reduces the effect derived from the relative angle difference of radial loads.

  • PDF

Critical Speed Analysis of a 75 Ton Class Liquid Rocket Engine Turbopump due to Load Characteristics (75톤급 액체로켓엔진 터보펌프의 하중 특성에 따른 임계속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Hong, Soon-Sam;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • Critical speed of high thrust liquid rocket engine turbopump is obtained through a rotordynamic analysis and a unloaded turbopump test is peformed for validation of the numerical model. The first critical speed predicted by the numerical analysis is correlated well with the test result for the bearing unloaded rotor condition only considering mass unbalance load. Using the previous rotordynamic model, critical speed variation is estimated as a function of varied bearing stiffness due to pump and turbine radial loads with relative angle difference. From the numerical analysis, it is found that the relative angle difference of pump and turbine radial loads greatly affects the critical speed. However, additional axial load reduces the effect derived from the relative angle difference of radial loads.

Dynamic Analysis of Rotor Systems Considering Ball Bearing Contact Mechanism (볼 베어링의 접촉 메커니즘을 고려한 회전체 시스템의 동적 해석)

  • Kim, YoungJin;Lee, Jongmahn;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1535-1540
    • /
    • 2013
  • We propose a finite element modeling method considering the ball bearing contact mechanism, and the developed method was verified through experimental and analytical results of inner and outer race-type rotor systems. A comparison of the proposed method with conventional method reveals that there is little difference in the results of the inner race-type rotor system, but there are considerable differences in the results of the outer race-type rotor system such that predictions of greater accuracy can be made. Therefore, the proposed method can be used for accurately predicting the dynamic characteristics of an outer race-type rotary machine.

Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation (탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석)

  • Dongchan Seo;Kyung-Heui Kim;Dohoon Lee;Bora Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by a Flexible Base Plate in a HDD (유연한 베이스 플레이트로 지지되는 회전 유연 HDD 디스크-스핀들계의 유한 요소 진동 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.571-577
    • /
    • 2003
  • This research proposes a finite element method to determine the natural vibration characteristics of the spinning disk-spindle system in a HDD including the flexibility of supporting structure. Finite element equations of each substructure are derived with the introduction of consistent variables to satisfy the geometric compatibility at the internal boundaries. The natural frequencies and modes from the global asymmetric matrix equations of motion are determined by using the implicit restarted Arnoldi iteration method. The validity of the proposed method is verified by the experimental modal testing. It also shows that the flexibility of base plate plays an important role to determine the natural frequencies of the spinning disk-spindle system in a HDD.

  • PDF