• Title/Summary/Keyword: 1%2C10-Phenanthroline

Search Result 65, Processing Time 0.026 seconds

The Roles of Hydrogen Bonds in 2,9-(N,N-Dimethylethylenediaminomethyl)-1,10-phenanthroline Molecule as a New Ligand Compound of Artificial DNase (인공 DNase의 리간드 화합물로써 2,9-(N,N-Dimethylethylenediaminomethyl)-1,10-phenanthroline 분자내 수소결합들의 역할)

  • Sung, Nack-Do;Park, Kyeng-Yong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.326-330
    • /
    • 2005
  • In the catalytic hydrolysis of 2',3'-cAMP by the Cu(II) complexes of 2,9-(N,N-dimethylethylenediamino)-1,10-phenanthroline (A) and 2,9-(N,N-dimethylethylenediaminomethyl)-1,10-phenanthroline (B) that are designed as a new ligand molecule of artificial DNase, due to the four intramolecular H-bonds forming between amino groups of ligand molecule and phosphoryl group of 2',3'-cAMP. It is anticipated that Cu(II) complexes of (A) and (B) are able to promote a rate that is as much as seventy thousand times faster than the catalytic hydrolysis rate of 2',3'-cAMP by Cu(II) complexes of 2,9-dimethyl-o-phenanthroline.

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl·2H2O

  • Pu Su Zhao;Lu De Lu;Fang Fang Jian
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.334-338
    • /
    • 2003
  • The crystal structure of $[Co(phen)_2(Cl)(H_2O)] Clㆍ2H_2O$(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P1, with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)${\AA}$ ${\alpha}$=64.02(1), ${\beta}$=86.364(9), ${\gamma}=78.58(2)^°$, and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33${\AA}$). The intermolecular hydrogen bonds connect the $[Co(phen)_2(Cl)(H_2O)]1+,\;H_2O$ moieties and chloride ion.

Comparison of Binding Stoichiometry of [Ru(1,10-phenanthroline)2dipyrido [3,2-a:2',3'-c]phenazine]2+ and its Bis-derivative to DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Lee, Il-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3658-3662
    • /
    • 2010
  • A new bis-Ru(II) complex, in which two [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$ were tethered by a 1,3-bis(4-pyridyl)propane linker, was synthesized and its binding mode and stoichiometry to DNA was investigated by optical spectroscopy including linear dichroism (LD) and fluorescence intensity measurement. The magnitude of the negatively reduced LD signal of the bis-Ru(II) complex in the dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) ligand absorption region appeared to be similar compared to that in the DNA absorption region, which is considered to be a diagnostic for DPPZ ligand intercalation. The binding stoichiometry measured from its LD magnitude and enhanced fluorescence intensity corresponds to one ligand per three DNA bases, effectively violating the nearest neighbouring site exclusion model for classical DNA intercalation. This observation is in contrast with monomer analogue [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$, which is saturated at the DPPZ ligand to DNA base ratio of 0.25, or one DPPZ ligand per four nucleobases.

Photoluminescence properties of eight coordinated terbium(III) complexes (8배위 터븀 (III) 착화합물의 합성과 Photoluminescence 특성)

  • Yun, Myung-Hee;Kim, Yeon-Hee;Choi, Won-Jong;Chang, Choo-Hwan;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.451-459
    • /
    • 2011
  • Eight coordinated terbium(III) complexes, tris (2-pyrazinecarboxylato)(phenanthroline) terbium(III) [$Tb(pzc)_3$(phen)], tris (5-methyl-2-pyrazinecarboxylato) (phenanthroline) terbium(III) [$Tb(mpzc)_3$(phen)] and tris(2-picolinato) (phenanthroline) terbium(III) [$Tb(pic)_3$(phen)], have been synthesized and characterized by Fourier transform infrared (FT-IR), UV-Visible and X-ray photoelectron spectroscopy. Photoluminescence (PL) spectroscopy shows that these complexes emitted strong green luminescence. When powder samples of the $Tb^{3+}$ complexes are examined using time-resolved spectroscopic analysis, the luminescence lifetimes are found to be 0.87 ms and 1.0 ms, respectively. Thermogravimetric analysis reveals the terbium complexes to have good thermal stability up to $333-379^{\circ}C$. Cyclic voltammetry shows that HOMO-LUMO energy gap of the $Tb^{3+}$ complexes ranges from 4.26~4.41 eV. These values are similar to those obtained from the UV-visible spectra. Overall, the synthesized $Tb^{3+}$ complexes may be useful advanced materials for green light emitting devices.

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Tigineh, Getinet Tamiru;Sitotaw, Getu;Workie, Amogne;Abebe, Atakilt
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.203-208
    • /
    • 2021
  • As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

A Synthesis and Characterization of Pt(II) Complexes with Bipyrimidin-based Back-bone System (비피리미딘계 배위자를 골격으로 하는 Pt(II)착체의 합성 및 특성)

  • Son, Seokhwan;Ahn, Hogeun;Chung, Minchul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.555-559
    • /
    • 2016
  • In this study, new platinum complexes were synthesized utilizing the ligand of a 2,2'-bispyrimidine (bpim), 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (5,5-mebpy), 5'-bromo-2,2'-bipyridine (5-brbpy), 5,5'-dibromo-2,2'-bipyridine (5,5-brbpy), 4,4'-dimethyl-2,2'-bipyridine (4,4-mebpy), 4,4'-dihexyl-2,2'-Bipyridine (4,4-hebpy), 1,10'-Phenanthroline (phen), 3,4,7,8'-tetramethyl-1,10'-Phenanthroline (3,4,7,8-phen). In order to determine chemical structure of Synthesized platinum complexes, $^1H(^{13}C)$-NMR, UV-vis and FT-IR were used and optical physics and chemical properties were measured PL. In the case of platinum complexes, wavelength has been identified 356~421 nm. Quantum efficiency in DMSO solution was appeared 0.05~0.46.

Binding Mode of [Ruthenium(II)$(1,10-Phenanthroline)_2L]^{2+}\;to\;Poly(dG){\cdot}poly( dC){\cdot}poly(dC)^+$ Triplex DNA

  • Jo, Chang Beom;Jo, Tae Seop;Kim, Bok Jo;Han, Seong Uk;Jeong, Maeng Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.1052-1054
    • /
    • 2000
  • Binding geometries of $[Ru(II)(110-phenanthroline)_2L]^2+$, complexes (where L = dipyrido [3,2-a:2',3'-c]phena-zine (DPPZ) or benzodipyrido[3,2-a:2',3'-c] phenazine (BDPPZ)) to poly(dG)${\cdot}$poly(dC)${\cdot}$poly(dC) + triplex DNA (CGC + triplex) has been investigated by linear dichroism and normal absorption spectroscopy. Analysis of the linear dichroism for the CGC+ triplex and $[Ru(II)(phen)_2BDPPZ]^2+$ complex indicates that the extended ligand of the metal complex lie perpendicular to the polynucleotide helix axis. Together with strong hypochromism and red shift in the interligand absorption region, we concluded that the extended BDPPZ or DPPZ ligand in-tercalated between the bases of polynucleotide. The spectral properties of the metal complexes bound to CGC+ triplex are similar to those bound to $poly(dA)[poly(dT)]^2$ triplex (Choi et al., Biochemistry 1997, 36, 214), sug-gesting that the metal complex is located in the minor groove of the CGC+ triplex.

Metal-Dinitrosyl Complexes(III) : Synthesis and Structural Study of Homo-, Hetero-dinuclear Molybdenum and Tungsten Complexes, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 $(phen = 1,10-phenanthroline, pyz = pyrazine) (금속-디니트로실 착물 (제 3 보) : 몰리브덴과 텅스텐의 호모 및 헤테로 이핵 착물, $[Cl(phen)(NO)_2M({\mu}-pyz)M'(NO)_2(phen)Cl][ClO_4]_2 (phen=1,10-phenanthroline,\;pyz=pyrazine)$의 합성 및 구조에 대한 연구)

  • Sang-Oh Oh;Seong-Jong Mo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.655-661
    • /
    • 1993
  • The neutral monomeric compounds $[Mo(NO)_2Cl_2(phen)]$ and $[W(NO)_2Cl_2(phen)]$ (phen= 1,10-phenanthroline) have been prepared by reactions of polymeric compounds $[{Mo(NO)_2Cl_2}n],\;[{W(NO)_2Cl_2}n]$ with chelate ligands. Additions of one equivalent of silver(I) perchlorate to these cis-dinitrosyl compounds in acetone solution produce $[Mo(NO)_2(phen)(S)Cl][ClO_4]\;and\;[W(NO)_2(phen)(S)Cl][ClO_4]$ (S = acetone). The homo- and hetero-dinuclear complexes, $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][ClO_4]_2$ (M = Mo, W) and $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][C1O_4]_2$ (M = Mo, M' = W) have been prepared by these monocationic complexes with pyrazine ligand respectively. These complexes characterized by elemental analysis, $1^H-\;and\;^{13}C-NMR$, infrared, and UV-visible spectroscopy are reported. The spectral data indicate that homo- and hetero-dinuclear complexes were symmetrical structures of $C_{2v}$.

  • PDF

Purification and Characterization of Fibrinolytic Enzymes from Tricholoma saponaceum (할미송이버섯으로부터 혈전용해효소의 정제 및 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Two fibrinolytic enzymes were purified from the fruiting bodies of Tricholoma saponaceum. The enzymes have a molecular weight of 18(FE-1) and 18.2(FE-2) kDa, respectively, and include $Zn^{2+}$ ion as determined by ICP/MS. The N-terminal amino acid sequence of the two enzymes were exactly the same: A-L-Y-V-G-X-S-P-X-Q-Q-S-L-L-V. The activity of FE-1 was highly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. The activity of FE-1 was slightly increased by $Mg^{2+},\;Zn^{2+},\;Fe^{2+}\;and\; Co^{2+}$, however, the enzyme activity was totally inhibited by $Hg^{2+}$. Addition of $Zn^{2+}\;and\;Co^{2+}$ reversed the inhibition caused by 1,10-phenanthroline. It has a pH optimum at pH 7.5, suggested that FE-1 was a neutral protease. It shows the maximum fibrinolytic activity at $55^{\circ}C$, is completely inactivated above at $65^{\circ}C$.

  • PDF

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.