• Title/Summary/Keyword: 1%2C3-dichloropropene

Search Result 2, Processing Time 0.024 seconds

Multi Analysis of Fumigants in Soil and Water (물과 토양에서 훈증제의 동시분석법 확립)

  • Kim, Jung-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.365-373
    • /
    • 2006
  • Emission of methyl bromide (MeBr) from soil was implicated in stratospheric ozone depletion. To determine multi analysis of alternatives fumigants for MeBr, this paper describes the methods of analysis in water and soil. The MeBr, methyl iodide (Mel), propargyl bromide (PBr), cis 1,3-dichloropropene (cis 1,3-D), trans 1,3-dichloropropene (trans 1,3-D) and chloropicrin(CP) are separated on the base line on GC-ECD at three column of AT+DB+DB (90m) with temperature programing of $35^{\circ}C{\rightarrow}110^{\circ}C$ on GC-ECD. The relative retention time for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 1.0, 1.4, 2.3, 3.2, 3.6 and 3.7, respertively. The detection limit for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 469 pg, 5 pg, 21 pg, 79 pg, 101 PE and 5pg, respectively. Recovery of MeBr Mel, PBr, cis 1,3-D, trans 1,3-D and CP in water added 150 ppm fumigants were 81%, 96%, 95%, 97%, 98% and 99%, respectively. Recovery of MeBr, MeI, PBr, cis 1, 3-D, trans 1,3-D and CP in soil added 150ppm fumigants were 56%, 84%), 85%, 81%, 87% and 88%, respectively.

Transformation for 1,3-Dichloropene of Soil Fumigant in Water and Soil (토양 훈증제 1,3-Dichloropene의 물 및 토양 중 분해)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1463-1468
    • /
    • 2007
  • Emission of methyl bromide(MeBr) of soil fumigant was implicated in stratospheric ozone depletion. To determine the environmental fate for 1,3-dichloropene(1,3-D) of alternatives fumigants for MeBr, this paper researched the transformation for 1,3-D in water and soil. Half lives of cis-1,3-D in water with first-order kinetics are 9.9day and 1.7day at $25^{\circ}C\;and\;40^{\circ}C$, half lives of trans-1,3-D are 8.6day and 1.5day at $25^{\circ}C\;and\;40^{\circ}C$, respectively. Transformation for 1,3-D in water at high temperature faster then at low temperature. Hydrolysis for 1,3-D in water are unaffected at $pH\;2.5{\sim}pH\;10.0$, but hydrolysis for 1,3-D at pH 11.5 higher then at $pH\;2.5{\sim}pH\;10.0$. Half lives of cis-1,3-D in soil are 11.5day and 7.7day at 3% and 10% of soil moisture, half lives of trans-1,3-D are 9.9day and 6.9day at 3% and 10% of soil moisture, respectively. Transformation for 1,3-D in water increased with increasing soil moisture. Transformation for trans-1,3-D isomer are more rapid then cis-1,3-D isomer in water and soil. This research has identified that transformation for 1,3-dichloropropene are affected by temperature, pH, soil moisture, and isomer of cis and trans in water and soil.