• Title/Summary/Keyword: 12Cr Alloy Steel

Search Result 34, Processing Time 0.021 seconds

Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel (고온의 인공해수 중 12Cr강의 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.772-778
    • /
    • 2001
  • In this study, corrosion fatigue characteristics of 12Cr alloy steel were investigated in 3.5wt.% NaCl solution of 150$^{\circ}C$ and 4.5bar. Behavior of corrosion fatigue cracks was measured by the indirect compliance method and compared with the results in distilled water and in air. 1) 12Cr alloy steel was susceptible to temperature. Its susceptibility was increased as the temperature was increased. 2) The crack growth characteristics of 12Cr alloy steel in distilled water were similar to 3.5wt.% NaCl solution. 3) The temperature of solution affects to the crack growth characteristics of 12Cr alloy steel. In corrosion solutions of 4.5bar, 150$^{\circ}C$, fracture surfaces of corrosion fatigue crack growth at a/W=0.3 was showed the trans-granular fracture suface. As the crack grew up, it was changed to inter-granular type. In condition of high temperature, The crack growth behaviors of 12Cr alloy steel were remarkable.

Determining Factors for the Protectiveness of the Passive Film of FeCrN Stainless Steel Formed in Sulfuric Acid Solutions

  • Ha, Heon-Young;Lee, Tae-Ho
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • In NaCl solutions acidified with $H_2SO_4$, Fe20Cr1.1N alloy showed enhanced pitting corrosion resistance than Fe20Cr alloy. An XPS analysis revealed that the passive film of Fe20Cr1.1N alloy contained higher cationfraction of Cr than that of Fe20Cr alloy, and nitrogen was incorporated into the film. In addition, it was found that the passive film of Fe20Cr1.1N alloy was thinner and had higher oxygen vacancy density than that of Fe20Cr alloy. Based on these observations, it was concluded that the chemical composition was the determining factor for the protectiveness of the passive film of Fe20Cr based alloy in dilute $H_2SO_4$ solution.

The Prediction of Fatigue Damage for Pressure Vessel Materials using Shear Horizontal Ultrasonic Wave (SH(shear horizontal) 초음파를 이용한 압력용기용 재료의 피로손상 예측)

  • Kang, Yong-Ho;Chung, Yong-Keun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.90-96
    • /
    • 2009
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel (12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성)

  • Jo, Sun-Young;Kim, Chul-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Evaluation of Stress Corrosion Strength According to Crystal Structure of 12Cr Alloy Steel Used Steam Turbine Blade (증기터빈 블레이드용 12Cr 합금강의 결정구조에 따른 응력부식강도 평가)

  • Kang, Yong-Ho;Bae, Dong-Ho;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.911-917
    • /
    • 2008
  • It was found that more than 60% of the steam turbine blade damages occurred under the condition alternatively repeated wet and dry of vapor and condensed vapor at the lower pressure stage. And also, it has been well known that both the mechanical properties and environmental strength of the steam turbine blade can be changed by the crystal structure. However, in spite of these common facts, it is difficult to find out the quantitative results including the particular environmental condition as well as the actual service conditions. In this study, as a fundamental investigation to provide design information and reliability evaluation of the 12Cr alloy steel used for a steam turbine blade, stress corrosion strength of the 12Cr alloy steel of which its crystal structure is different was assessed under $2.5{\sim}3.5wt.%$ NaCl solution at 90oC. From the results, S-t curves for predicting damage life and design criterion of the 12Cr alloy steel including corrosion environment as well as S.C.C. condition were obtained.

Evaluation of High Temperature Material Degradation for 12Cr Steel by Electrochemical Polarization Method (전기화학적 분극법을 이용한 12Cr강의 고온 재질열화도 평가)

  • Seo Hyon-Uk;Park Kee-Sung;Yoon Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.965-975
    • /
    • 2006
  • High pressure turbine blades are one of the key components in fossil power plants operated at high temperature. The blade is usually made of 12Cr steel and its operating temperature is above $500^{\circ}C$. Long term service at this temperature causes material degradation accompanied by changes in microstructures and mechanical properties such as strength and toughness. Quantitative assessment of reduction of strength and toughness due to high temperature material degradation is required for residual life assessment of the blade components. Nondestructive technique is preferred. So far most of the research of this kind was conducted with low alloy steels such as carbon steel, 1.25Cr0.5Mo steel or 2.25Cr1Mo steel. High alloy steel was not investigated. In this study one of the high Cr steel, 12Cr steel, was selected for high temperature material degradation. Electrochemical polarization method was employed to measure degradation. Strength reduction of the 12Cr steel was represented by hardness and toughness reduction was represented by change of transition temperature, FATT. Empirical relationships between the electrochemical polarization parameter and significance of material degradation were established. These relationship can be used for assessing the strength and toughness on the aged high pressure blade components indirectly by using the electrochemical method.

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade (Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Ryu, Seung-U;Kim, Hyo-Jin;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.