• Title/Summary/Keyword: 1st. Intermediate Roll

Search Result 3, Processing Time 0.016 seconds

Prevension of Quarter Wave in Sendzimir Mill (젠지미어 압연기에서 Quarter Wave 방지)

  • 김종택;이영호;한석영;이준전;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.257-266
    • /
    • 1993
  • Computer Simulation based of divided element method was done to predict strip shape in20-high Sendzimir Mill and has been used to find a way for preventing quarter waves occurring in the wide and thin gaged strip rolling. The simulation showed that it was difficult to prevent quarter waves by the existing methods of controlling actuators such as the shifting of the first intermediate roll and the profile control of As-U-Roll in back up roll. It was, however, confirmed analytically and experimentally that quarter waves could be effectively reduce by changing taper mode at the barrel-end taper radius of the first intermediate roll.

Analysis of roll deformation for sendzimir rolling mill (젠지미어 압연기 롤 변형해석)

  • 이영호;김종택;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1689-1699
    • /
    • 1990
  • Sendzimir rolling mill is widely used for rolling hard materials such as stainless steel due to its small work roll diameter and shape controllability using two effective actuators, AS-U-Roll crown adjustment and lst. intermediate roll shifting. However, in comparison with 4-high or 6-high mills, it is noteasy to get good strip or excellent flatness because Z-mill has small diameter of work rolls which are easily deformed by load. A new mathematical model based on the method of dividing roll and strip into multo-portions was used to develop strip profile prediction software. Using the developed software, several influencing factors related to rolled strip profile for Z-Mill were tested analytically and characterized for the effective shape control. The effects of adjusting shape control actuators of Z-Mill on strip profile were also examined and discussed in detail.

High Tunable Control Algorithm for Semi-active Suspension by a Normal Type CDC Damper (연속 가변 댐퍼에 의한 반능동 현가장치의 고 자유도 제어기)

  • Choi, Ju-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1096-1103
    • /
    • 2010
  • This paper proposes CDC (Continuous Damping Control) algorithm and verifies in multi-body dynamic vehicle. In order to distinguish a road profile on driving, waviness calculated by the filtered vertical-accelerations of sprung and unsprung masses is introduced. Sky-hook control is used at a low waviness road and constant damping level control is used at a high waviness road, where the hard damping level is determined by waviness, roll rate, acceleration, and deceleration. The damping levels of ride, anti-roll, anti-squat, and anti-dive modules are calculated by tuning parameters which is dependent upon vehicle velocity. Therefore this high tunable algorithm is useful to improve the ride and handling performance under various driving conditions. In the simulations, tire and dampers are modelled by SWIFT (Short Wavelength Intermediate Frequency Tire) model and 1st order delay model, and results are compared with conventional damper's.