• Title/Summary/Keyword: 2-stage Turbocharger

Search Result 5, Processing Time 0.242 seconds

Simulation of the Effect of EGR Configuration on EGR Rate in a Passenger Diesel Engine with Two-Stage Turbocharger (2단 터보과급기 장착 승용디젤엔진에서 EGR 배열 방식이 EGR율에 미치는 영향에 대한 시뮬레이션)

  • Chung, Jin-Eun;Roh, Ho-Jong;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4137-4144
    • /
    • 2010
  • In this study, the simulations were carried out to show the effect of the EGR configuration in a passenger diesel engine with 2-stage turbocharger on the EGR rate. The AMESim and IFP Engine Library were used to make the program for the simulation. Three EGR configurations, HPL(high pressure loop), LPL(low pressure loop), and SLPL(semi low pressure loop), were considered. The EGR rate in the HPL and LPL EGR routes were 6.4% and 10.0% respectively but the rate in SLPL route was 18.0% and their air/fuel ratio for all three cases was 21. Therefore the SLPL EGR configuration may be positively considered in the design of the passenger diesel engine with 2-stage turbocharger.

Performance Analysis of a Turbocharged SI Engine System for UAV (무인기용 터보차저 장착 SI 엔진 시스템 성능해석)

  • Lim, Byeung Jun;Kang, Young Seok;Kang, Seung Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.43-49
    • /
    • 2016
  • A performance analysis of a gasoline engine with a 2-stage turbocharger system for unmanned aerial vehicle(UAV) was conducted. One dimensional system analysis was conducted for the requirements of turbochargers and adequate turbochargers were selected from commercially available models for automobiles. Modeling and simulation were performed by Ricardo WAVE. Gasoline engine modeling was based on a 2.4 L 4-cylinder engine specification. The selected turbochargers and intercoolers were added to the engine model and simulated at 40,000 ft altitude condition. The results of the engine model and 2-stage turbocharger system model simulation showed break power 93 kW which is appropriate power required for the engine operation at the ambient conditions of 40,000 ft altitude.

Multi-Stage Turbocharger Gasoline IC Engine Simulation for HALE UAV (고고도 장기체공 무인기 적용을 위한 다단 터보차저 가솔린 엔진 시스템 시뮬레이션)

  • Kang, Seungwoo;Bae, Choongsik;Lim, Byeungjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • This study conducted a simulation to observe the performance of a multi-turbocharged gasoline internal combustion engine for a high-altitude long-endurance unmanned aerial vehicle (HALE UAV). The WAVE 1-D engine simulation software from Ricardo was used for the engine system modeling and simulation. The specifications of a 2.4-L four cylinder gasoline engine from commercial vehicles and maps of commercial vehicle turbochargers were applied to the multi-stage turbocharged engine system model. Three turbochargers and intercoolers were installed in series for the appropriate intake of pressure for the gasoline engine at a high altitude of 60,000 ft. There was one wastegate for the turbochargers. The operability of the engine system was analyzed via this simulation model.

The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger (박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구)

  • Kim, Hong-Won;Ha, Ji-Soo;Kim, Bong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine (대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가)

  • Song, Changhoon;Wang, Tae Joong;Im, Heejun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.