• Title/Summary/Keyword: 3-Axis Accelerometer

Search Result 140, Processing Time 0.038 seconds

Human Activity Recognition using an Image Sensor and a 3-axis Accelerometer Sensor (이미지 센서와 3축 가속도 센서를 이용한 인간 행동 인식)

  • Nam, Yun-Young;Choi, Yoo-Joo;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.129-141
    • /
    • 2010
  • In this paper, we present a wearable intelligent device based on multi-sensor for monitoring human activity. In order to recognize multiple activities, we developed activity recognition algorithms utilizing an image sensor and a 3-axis accelerometer sensor. We proposed a grid?based optical flow method and used a SVM classifier to analyze data acquired from multi-sensor. We used the direction and the magnitude of motion vectors extracted from the image sensor. We computed the correlation between axes and the magnitude of the FFT with data extracted from the 3-axis accelerometer sensor. In the experimental results, we showed that the accuracy of activity recognition based on the only image sensor, the only 3-axis accelerometer sensor, and the proposed multi-sensor method was 55.57%, 89.97%, and 89.97% respectively.

Development and Application of Three-axis Motion Rate Table for Efficient Calibration of Accelerometer and Gyroscope (효율적인 각/가속도 센서 오차 보상을 위한 3 축 각도 측정 장치의 개발 및 활용)

  • Kwak, Hwan-Joo;Hwang, Jung-Moon;Kim, Jung-Han;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.632-637
    • /
    • 2012
  • This paper introduces a simple and efficient calibration method for three-axis accelerometers and three-axis gyroscopes using three-axis motion rate table. Usually, the performance of low cost MEMS-based inertial sensors is affected by scale and bias errors significantly. The calibration of these errors is a bothersome problem, but the previous calibration methods cannot propose simple and efficient method to calibrate the errors of three-axis inertial sensors. This paper introduces a new simple and efficient method for the calibration of accelerometer and gyroscope. By using a three-axis motion rate table, this method can calibrate the accelerometer and gyroscope simultaneously and simply. Experimental results confirm the performance of the proposed method.

The tilt sensing system using serial communication (시리얼 통신을 이용한 기울기 감지 센싱 시스템)

  • Park, Jin-won;Lee, Hong-min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.4
    • /
    • pp.53-58
    • /
    • 2009
  • In recently years, the research and application for sensor has increased in each field. In this paper, the system which can perceive and detect using 3-axis accelerometer sensor and serial communication is proposed. Also, the user has GUI environment for monitor in real-time. In order to reduce unstable data and error defect of electronic rechargeable liquid tilt sensor used digital 3-axis accelerometer sensor which has AD convertor. Therefore, this system provide exact data and a problem of objects for user more easier.

  • PDF

Pedestrian Gait Estimation and Localization using an Accelerometer (가속도 센서를 이용한 보행 정보 및 보행자 위치 추정)

  • Kim, Hui-Sung;Lee, Soo-Yong
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • This paper presents the use of 3 axis accelerometer for getting the gait information including the number of gaits, stride and walking distance. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We proposed a way of minimizing the error due to the change of the orientation. Pedestrian localization is implemented with the heading angle and the travel distance. Heading angle is estimated from the rate gyro and the magnetic compass measurements. The performance of the localization is presented with experimental data.

Preliminary ADHD Symptom of the Hyperactivity Diagnosis Service Using Ubiquitous Technology (Ubiquitous Technology를 이용한 주의력결핍 과잉행동장애 증상 중 과잉활동증 아동 예진 서비스)

  • Shin, You-Min;Yang, Jae-Soo;Park, Peom
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • The purpose of this study was to detect early children with hyperactivity which is one of the symptoms of Attention Deficit-Hyperactivity Disorder (ADHD). This study used two methods: K-CBCL and observation of children's behavior. K-CBCL was done online by parents at home. For observation of children's behavior, the school asked children to wear a 3-axis accelerometer on their wrists. The data from K-CBCL and 3-axis accelerometer were analyzed and clustered to separate hypersensitive children from ordinary children. This experiment confirmed that 3-axis accelerometer which is one of Ubiquitous techniques and the K-CBCL questionnaire were helpful for detection of hypersensitive children.

A Design of an Algorithm for Analysis of Activity Using 3-Axis Accelerometer (3축 가속도 센서를 이용한 동작분석 알고리즘 설계)

  • 이승형;임예택;이경중
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • This paper describes design of an algorithm for analyzing human activity using body-fixed 3-axis accelerometer in the small of the back. In the first step, we distinguish static and dynamic activity period using AC signal analysis. Then five postures were classified by applying the threshold in DC signal corresponding to the static activity period. Also, after comparison of average power and taking negative peak signal in the dynamic activity period, the four dynamic activities were classified by adaptive threshold method. To evaluate the performance of the proposed algorithm, the measured signals obtained from six subjects were applied to the proposed algorithm and the results were compared with the simultaneously measured video data. As a result, the activity classification rate of 95.7% on average was obtained. Overall results show that the proposed classification algorithm has a possibility to be used to analyze the static and dynamic physical activity.

Gait Characteristics of Sasang Constitution with 3-Axis Accelerometer-Based Gait Analysis (3축 가속도계를 이용한 사상체질별 보행특성 연구)

  • Lee, Dongkyu;Jeong, Seoyoon;Kim, Lakhyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.31 no.4
    • /
    • pp.225-233
    • /
    • 2020
  • Objectives: This study aimed to reveal the gait characteristics of each Sasang constitution by examining the differences in gait analysis indicators using a 3-axis accelerometer. Methods: Ninety-one participants were classified through the TS-QSCD (Two-Step Questionnaire for Sasang Constitution Diagnosis) method and gait analysis was performed using a 3-Axis Accelerometer (G-WALK. BTS Bioengineering, Italy). Gait analysis in returning to the 6-meter turnaround point and 6-minute walking test were performed. The differences in the gait analysis index values were analyzed between each constitution. Results: The gait analysis of 91 subjects (37 Taeumin, 37 Soyangin, and 17 Soeumin), showed that the percent stride length/height in the Soyangin subjects was significantly higher than that of the Taeeumin and Soeuminin subjects in the spatiotemporal walking variables (p<0.05). Stride length also showed the widest tendency in the Soyangin subjects (p=0.05). In the kinesiological analysis, the range of pelvic obliquity angles in the Soeumin subjects was significantly wider than that of the Taeumin and Soyangin subjects (p<0.05). In the six-minute walking test, the Soyangin subjects walked the farthest at 309.41±35.23 m (p=0.064). Conclusions: In a comparison of the gait characteristics for each Sasang constitution using a three-dimensional accelerometer, the stride width of the Soyangin subjects was the widest compared to the Taeeumin, and Soeumin subjects, and Soyangin's walking speed showed a faster tendency than that of the Taeeumin and Soeumin subjects.

Measurement of the hand-transmitted vibration using a miniature 3-axes accelerometer (초소형 3축 가속도계를 이용한 수전달 진동 측정에 관한 연구)

  • 송치문;장한기;김승한;채장범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1043-1047
    • /
    • 2003
  • Most of the measurement and the evaluation of hand-transmitted vibration have been performed by using a small size single axis accelerometer between the handle and the hand palm or a three axis accelerometer attached on an adapter outside the hand(indirect measurement). It is most desirable for the correct evaluation of hand-transmitted vibration form the power tool handle to measure the acceleration between the handle surface and the hand palm in the three axis(direct measurement) as recommended in ISO 5349-1. In the study three axes acceleration measurement device was developed of which the thickness was less than 7mm so that it can be placed between the handle and the palm without any inconvenience during the measurement. To verify the performance of the developed device, measured acceleration by the two methods, direct and indirect, were compared in the study.

  • PDF

Posture guidance system using 3-axis accelerometer for scoliosis patient (3축 가속도 센서를 활용한 척추 측만증 환자용 자세 교정 유도 장치)

  • An, Y.S.;Kim, K.S.;Song, C.G.
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.396-398
    • /
    • 2009
  • Scoliosis is a three-dimensional deformity caused by lateral curvature of the spine. The existing braces used to correct the posture were some drawbacks such as inconvenience, tightness as well as unfitness to wear. In this study, we devised a posture guidance system in order to monitor a posture continuously and lead to pose correctly and a new method fur measuring a Cobb's angle value in third dimension based on two 3-axis accelerometers. As a result, the correlation coefficients between desired and measured angles were and standard error between desired and measured angles were 0.99, 1.32(x-axis), 0.99 and 1.10(y-axis), respectively. The devised system showed good potential for the optimal posture guide and an early detection of scoliosis.

  • PDF

Real-Time Physical Activity Recognition Using Tri-axis Accelerometer of Smart Phone (스마트 폰의 3축 가속도 센서를 이용한 실시간 물리적 동작 인식 기법)

  • Yang, Hye Kyung;Yong, H.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.506-513
    • /
    • 2014
  • In recent years, research on user's activity recognition using a smart phone has attracted a lot of attentions. A smart phone has various sensors, such as camera, GPS, accelerometer, audio, etc. In addition, smart phones are carried by many people throughout the day. Therefore, we can collect log data from smart phone sensors. The log data can be used to analyze user activities. This paper proposes an approach to inferring a user's physical activities based on the tri-axis accelerometer of smart phone. We propose recognition method for four activity which is physical activity; sitting, standing, walking, running. We have to convert accelerometer raw data so that we can extract features to categorize activities. This paper introduces a recognition method that is able to high detection accuracy for physical activity modes. Using the method, we developed an application system to recognize the user's physical activity mode in real-time. As a result, we obtained accuracy of over 80%.