• Title/Summary/Keyword: 3-D Surface Defects

Search Result 102, Processing Time 0.034 seconds

Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface (고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.

Technology for the Detection of Corrosion Defects in Buried Pipes of Nuclear Power Plants with 3D FEM (3D 유한요소법을 이용한 원전 매설배관 부식결함 탐상기술 개발)

  • Kim, Jae-Won;Lim, Bu-Taek;Park, Heung-Bae;Chang, Hyun-Young
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.292-300
    • /
    • 2018
  • The modeling of 3D finite elements based on CAD data has been used to detect sites of corrosion defects in buried pipes. The results generated sophisticated profiles of electrolytic potential and vectors of current distributions on the earth surface. To identify the location of defects in buried pipes, the current distribution on the earth surface was projected to a plane of incidence that was identical to the pipe locations. The locations of minimum electrolytic potential value were found. The results show adequate match between the locations of real and expected defects based on modeling. In addition, the defect size can be calculated by integrating the current density curve. The results show that the defect sizes were $0.74m^2$ and $0.69m^2$, respectively. This technology may represent a breakthrough in the detection of indirect damage in various cases involving multiple defects in size and shape, complex/cross pipe systems, multiple anodes and stray current.

Development of a Reliable Real-time 3D Reconstruction System for Tiny Defects on Steel Surfaces (금속 표면 미세 결함에 대한 신뢰성 있는 실시간 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1061-1066
    • /
    • 2013
  • In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.

Estimation of Stress Intensity Factors for 3-Dimensional Surface Defects under Axial Tensile Loads Using the Finite Element Method

  • Jeon, Byung-Young;Kumar, Y.V. Satish;Kang, Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.267-272
    • /
    • 2002
  • Pitting corrosion is a very common occurrence in marine structures. Therefore, the 3-D finite element analysis is carried out to determine the stress intensity factors at the pit depth and also at the surface of the pit. The pits are modeled as a part of sphere, based on the pit depth and the pit diameter as specified by the Ship Structural Committee. The pit depth and pit diameter are function of the percentage of pitting that the plate is subjected to. A dog-bone shaped specimen is subjected to different intensities of pitting and the stress intensity factors are determined under axial tensile loads.

  • PDF

Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects

  • Lim, Hyun-Chang;Jung, Ronald Ernst;Hammerle, Christoph Hans Franz;Kim, Myong Ji;Paeng, Kyeong-Won;Jung, Ui-Won;Thoma, Daniel Stefan
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Purpose: The purpose of the present study was to validate an experimental model for assessing tissue integration of titanium and zirconia implants with and without buccal dehiscence defects. Methods: In 3 dogs, 5 implants were randomly placed on both sides of the mandibles: 1) Z1: a zirconia implant (modified surface) within the bony housing, 2) Z2: a zirconia implant (standard surface) within the bony housing, 3) T: a titanium implant within the bony housing, 4) Z1_D: a Z1 implant placed with a buccal bone dehiscence defect (3 mm), and 5) T_D: a titanium implant placed with a buccal bone dehiscence defect (3 mm). The healing times were 2 weeks (one side of the mandible) and 6 weeks (the opposite side). Results: The dimensions of the peri-implant soft tissue varied depending on the implant and the healing time. The level of the mucosal margin was located more apically at 6 weeks than at 2 weeks in all groups, except group T. The presence of a buccal dehiscence defect did not result in a decrease in the overall soft tissue dimensions between 2 and 6 weeks ($4.80{\pm}1.31$ and 4.3 mm in group Z1_D, and $4.47{\pm}1.06$ and $4.5{\pm}1.37mm$ in group T_D, respectively). The bone-to-implant contact (BIC) values were highest in group Z1 at both time points ($34.15%{\pm}21.23%$ at 2 weeks, $84.08%{\pm}1.33%$ at 6 weeks). The buccal dehiscence defects in groups Z1_D and T_D showed no further bone loss at 6 weeks compared to 2 weeks. Conclusions: The modified surface of Z1 demonstrated higher BIC values than the surface of Z2. There were minimal differences in the mucosal margin between 2 and 6 weeks in the presence of a dehiscence defect. The present model can serve as a useful tool for studying peri-implant dehiscence defects at the hard and soft tissue levels.

3-D Analysis of Semiconductor Surface by Using Photoacoustic Microscopy (광음향 현미경법을 이용한 반도체 표면의 3차원적 구조 분석)

  • Lee, Eung-Joo;Choi, Ok-Lim;Lim, Jong-Tae;Kim, Ji-Woong;Choi, Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.553-560
    • /
    • 2004
  • In this experiment, a three dimensional structure analysis was carried out to examine the surface defects of semiconductor made artificially on known scale. It was investigated the three dimensional imaging according to the sample depth and the thermal diffusivity as well as the carrier transport properties. The thermal diffusivity measurement of the intrinsic GaAs semiconductor was also analyzed by the difference of frequency-dependence photoacoustic signals from the sample surface of different conditions. Thermal properties such as thermal diffusion length or thermal diffusivity of the Si wafer with and without defects on the surface were obtained by interpreting the frequency dependence of the PA signals. As a result, the photoacoustic signal is found to have the dependency on the shape and depth of the defects so that their structure of the defects can be analyzed. This method demonstrates the possibility of the application to the detection of the defects, cracks, and shortage of circuits on surface or sub-surface of the semiconductors and ceramic materials as a nondestructive testing(NDT) and a nondestructive evaluation(NDE) technique.

Fabrication of Plasma Electrolytic Oxidation Coatings on Magnesium AZ91D Casting Alloys

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • AZ91D casting alloy requires an advanced plasma anodizing processing because large amount of defects are liable to generate during anodization. In this study, plasma electrolytic oxidation (PEO) of AZ91D Mg alloy was conducted by the application of either constant voltage or current using a pulse mode and its effects on pore formation, surface roughness and corrosion resistance were investigated. The PEO films showed a three-layer structure. The PEO film thickness was found to increase linearly with voltage. The surface roughness, Ra, ranged between $0.2{\mu}m$ and $0.3{\mu}m$. The corrosion resistance increased from RN 3.5 to 9.5 by the PEO treatment when evaluated according to the 72 hour salt spray test. The PEO-treated surface exhibited higher pitting potential than the raw material.

Part tolerancing through multicale defect analysis

  • Petitcuenot, Mathieu;Anselmetti, Bernard
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • When manufactured parts undergo large deformations during the manufacturing process, the global specifications of a part based on the concept of tolerance zone defined in the ISO 1101 standard [1] enable one to control the part's global defects. However, the extent of this tolerance zone is too large when the objective is to minimize local defects, such as hollows and bumps. Therefore, it is necessary to address local defects and global defects separately. This paper refers to the ISO 10579 standard [2] for flexible parts, which enables us to define a stressed state in order to measure the part by straightening it to simulate its position in the mechanism. The originality of this approach is that the straightening operation is performed numerically by calculating the displacement of a cloud of points. The results lead to a quantification of the global defects through various simple models and enable us to extract local defects. The outcome is an acceptable tolerance solution. The procedure is first developed for the simple example of a steel bar with a rectangular cross section, then applied to an industrial case involving a complex 3D surface of a turbine blade. The specification is described through ISO standards both in the free state and in the straightened state.

Measurements of Defects after Machining CFRP Holes Using High Speed Line Scan (고속 라인 스캔 방식을 이용한 CFRP 가공 홀 표면 및 내부 결함 검사)

  • Kim, Teaggyum;Kyung, Daesu;Son, Unchul;Park, Sun-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Using a line scan camera and a Galvano mirror, we constructed a high-speed line-scanning microscope that can generate 2D images ($8000{\times}8000pixels$) without any moving parts. The line scanner consists of a Galvano mirror and a cylindrical lens, which creates a line focus that sweeps over the sample. The measured resolutions in the x (perpendicular to line focus) and y (parallel to line focus) directions are both $2{\mu}m$, with a 2X scan lens and a 3X relay lens. This optical system is useful for measuring defects, such as spalling, chipping, delamination, etc., on the surface of carbon fiber reinforced plastic (CFRP) holes after machining in conjunction with adjustments in the angle of LED lighting. Defects on the inner wall of holes are measured by line confocal laser scanning. This confocal method will be useful for analyzing defects after CFRP machining and for fast 3D image reconstruction.

Surface Structure and X-ray Topography of $NdAl_3(BO_3)_4$ Single Crystals Grown from High Temperature Solution of $BaO-B_2O_3-Nd_2O_3-Al_2O_3$ System ($BaO-B_2O_3-Nd_2O_3-Al_2O_3$계 고온 용액으로부터 성장된 $NdAl_3(BO_3)_4$ 단결정의 표면구조와 X-선 Topography)

  • 정선태;강진기;김정환;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.249-256
    • /
    • 1994
  • By surface structure and X-ray topographic observation, growth mechanism of NAB single crystal grown by TSSG technique using a BaB4O7 flux was studied. Surface structure of grown crystals were investigated by optical microscope. Growth history and crystal defects included within grown crystal were investigated using X-ray topography. The {001} faces were grown by 2-D nucleation growth. As decreasing cooling rate, growth mechanism of {111} and {11} was changed from 2-D nucleation growth to the growth by screw dislocation. Only surface striations developed parallel to a-axis were observed on {010} faces. Growth sector of NAB crystals were divided into {001}, {111}, {010}, {021}, {11}. The inclusion which was usually trapped between {001} faces was investigated.

  • PDF