• Title/Summary/Keyword: 3-way catalyst

Search Result 67, Processing Time 0.026 seconds

Studies on the Emission control of methanol engine exhaust with modified 3-way catalyst at cold start condition (변형된 삼원촉매에 의한 저온시동조건에서의 메탄올엔진 배가스 정화효과에 관한 연구)

  • 홍종성;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.160-167
    • /
    • 1993
  • As the major methanol fueled vehicle exhaust components, formaldehyde & methanol conversion over the existing commercial 3-way catalyst was examined in a labolatory tains different Ag loadings on commercial 3-way catalyst, and german commercial catalysts for methanol engine exhaust manufactured by a commercial manufacturer. Silver catalysts were prepared by the wet impregnation of silver nitrate solution on commercial 3-way catalyst. These catalysts were characterized with BET Surface area and pore size distribution. In general, the formaldehyde(HCHO) conversion of the tested catalysts was similar to that of methanol$(CH_3OH)$. At 100$^\circ$C, which is equivalent to the cold start condition, 5wt% Ag cat. showed the most excellent HCHO and $CH_3OH$ conversion. The order of activity for conversion of HCHO & $CH_3OH$ to carbon dioxide and water vapor was as follows ; 5wt% Ag/3-way cat.>2wt% Ag/3-way cat.>german cat. front(1) > german cat. rear(2) > 10wt% Ag/3-way cat.> commercial 3-wat catalyst. However there was no significant activity difference between those tested catalysts in the hot run condition of 400$^\circ$C. Therefore, it could be concluded that the Ag-modified 3-way catalyst was the most effective and practical catalyst system which could be capable of removal the HCHO and methanol at the special condition of low temperature such as cold start condition.

  • PDF

Premature Failure Prevention design of Three-way Catalyst Substrate using DOE (실험계획법을 이용한 삼원촉매담체의 조기 파손 예방 설계)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2010
  • Domestic three-way catalyst satisfies exhaust gas conversion efficiency or pressure drop etc. but doesn't satisfy thermal durability. Thermal stress analysis for three-way catalyst was performed based on experimental temperature distribution. Thermal safety of three-way catalyst was estimated by safety factor. Aspect ratio variable had the most significant effect on thermal stress. Thickness variable had the least significant effect on thermal stress. Optimal conditions for premature failure prevention of three-way catalyst were as follows : (1) aspect ratio of three-way catalyst : 0.6:1 (2) 2.84mm thick (3) silicon nitride. The safety of Taguchi-optimized three-way catalyst were 4.7 times higher than that of existent three-way catalyst.

The Effect of Volume and Precious Metal loading on the Performance of Pd+Rh Three Way Catalysts (Pd+Rh 삼원촉매에서 촉매체적 및 귀금속량이 정화성능에 미치는 영향)

  • 김계윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.389-397
    • /
    • 1999
  • Recently the use of Pd catalyst have been continued to expand because of cost avaliabilityand performance advantages. Especially the Pd+Rh catalyst instead of the Pt+Rh catalyst had been used for most of three way catalysts because of the more stringent emission standards and its higher temperature effectiveness. The main purpose of this study is to investigate the design parameter impacts on the Pd+Rh cat-alyst for the automotive exhaust catalysts application. This study was investigated on the catalyst efficiency for the volume and the precious metal loading of the Pd+Rh ceramic monolithic cata-lyst. And experiments concerning the effects of volume and precious metal loading on Pd+Rh three way catalysts were conducted to examined the catalyst light-off temperature and conver-sion efficiency on higher volume demonstrated almost similar performance. But their effects on higher precious metal loading demonstrated considerably better performance.

  • PDF

Development of a One-dimensional Numerical Model of the Electrically Heated Three-Way Catalyst For Start-up Heating in a 48-V Gasoline Hybrid Vehicle (48-볼트 가솔린 하이브리드 차량 초기 시동 시 배기 정화 성능 분석을 위한 1차원 전기 히터 촉매 해석 모델 개발)

  • Seongsu Kim ;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.150-155
    • /
    • 2023
  • Cold-start emissions are given great importance under the Euro-7 emission standard due to their significant impact on overall vehicle emissions. When an engine is started from a cold state, the combustion process is not yet optimized, leading to higher emissions. Hybrid vehicles, in particular, may face additional challenges, as their engine may remain inactive for extended periods, causing their catalysts to cool down and potentially become less effective in reducing emissions. In the present study, the performance of an electric heater was investigated as a means to enhance the catalyst heating during the start-up time. A simulation tool was utilized to develop a model for the gasoline exhaust aftertreatment system. The result indicates that the heater was able to increase the three-way catalyst temperature to 500℃ in 4 s using 20 kW power. In addition, the implementation of a secondary air supply resulted in reduced temperature overshoot and improved conversion efficiencies.

Characteristics of Heteropoly Acid Catalyst for Emission Gas Control in Methanol Fueled Vehicles (메탄올 자동차 배기가스 정화용 헤테로폴리산 촉매의 특성)

  • 서성규;박남국;박훈수;김재승
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 1995
  • To prevent or reduce air pollutant from methanol fueled vehicles, methanol oxidation reaction was carried out using a heteropoly acid catalysts. Catalytic activities of catalysts have been experimented at atmospheric pressure in a fixed bed flow reactor. Catalysts were characterized by XRD, IR, thermal analysis, N $H_{3}$-TPD and GC pulse technique. Acidities of catalysts were highly affected by poly-atoms. Methanol conversion was much higher on catalyst with W than on catalyst with Mo as a poly-atoms. With the increase of copper content(X) in C $u_{x}$ $H_{{3-2x}}$PMo catalyst, acidity was decreased and oxidation ability was increased. Methanol conversion and product distribution were affected by the acidity and oxidation ability of catalyst. Especially, supported PdSiW(1wt%) catalyst has a very good methanol conversion and C $O_{2}$ selectivity as high as a commertial 3-way catalyst.t.

  • PDF

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

Fuel Efficiency and Emission Characteristics on Aged Three-way Catalyst of LPG Vehicle (LPG 차량의 삼원촉매 노후화에 따른 연비 및 배출가스 특성)

  • Kang, Minkyung;Kwon, Seokjoo;Kim, Kiho;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.137-143
    • /
    • 2016
  • The LPG vehicles are being operated by commercial purposes generally such as taxis. Most of taxis have a long-mileage and a harsh driving pattern. These properties may accelerate aging of the three-way catalysts much faster than the passenger vehicles. Because of this background, it was analyzed the test result of fuel efficiency and emissions on the LPG-fueled light duty vehicle. It was selected for a LPG vehicle of ULEV level to measure the fuel efficiency and emissions of the aged three-way catalysts. And the aged three-way catalysts which was driven about 300,000km and 550,000km replaced on the test vehicle in consecutive order. As a result, The aged three-way catalysts generally had no effect on fuel efficiency result, and harmful exhaust emissions had been shown to increase in most of the test mode, even though it satisfied the regulation value on most test modes.

Estimation on Elastic Properties of SiC Ceramic Honeycomb Substrate (SiC 세라믹 하니컴 담체의 탄성 물성치 평가)

  • Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6106-6113
    • /
    • 2013
  • Automotive three-way catalyst substrate has a cordierite ceramic honeycomb structure. The substrate in the high engine speed range doesn't satisfy the design fatigue life due to the low mechanical properties of cordierite ceramic. SiC ceramic has higher mechanical properties than cordierite ceramic. If the automotive three-way catalyst substrate is made from the SiC ceramic honeycomb structure, the substrate can be prevented from premature failure. In this study, the mechanical properties of SiC ceramic honeycomb substrate were estimated by FEA. The FEA results indicated that the MOR and elastic modulus for the SiC ceramic honeycomb substrate was much higher than those for the cordierite ceramic honeycomb substrate.

The Study on the Noise Contributing Factors Extraction of the Passenger Diesel Engine(I) (승용 디젤엔진 소음 기여인자 추출에 관한 연구(I))

  • Kim, Sung-Hun;Kwon, Yong-Jun;Ko, Pil-Kyu;Jung, Yeon-Uk;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.90-98
    • /
    • 2011
  • Noises from diesel engine are the major issues for noise pollution as well as affect customers' purchasing needs to vehicles powered by diesel engine. This study investigates to screen-out main factors that contribute to noises from diesel engine using VGT 2000cc engine developed recently. Changes of fuel temperature, intake temperature and the presence of three way catalyst don't affect the 'Engine Radiation Noise' and the solely three way catalyst influence on the 'Tail Pipe Noise'. Especially, there are no effects of the presence of three way catalyst on torque, which is main subject that should be considered in secondary study.