• Title/Summary/Keyword: 300K VLCC

Search Result 20, Processing Time 0.022 seconds

Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model (KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.15-21
    • /
    • 1999
  • The flow characteristics around KRISO 300K VLCC double-body model have been experimentally investigated in a closed-type subsonic wind tunnel. The local mean velocity and turbulence statistics including turbulent intensity. Reynolds shear stress and turbulent kinetic energy were measured using a x-type hot-wire probe. The measurements were carried out at several transverse stations of the stern and near wake regions. The surface flow was visualized using on oil-film technique to see the flow pattern qualitatively. The flow in the stern and near wake region revealed complicated three-dimensional flow characteristics. The VLCC model shows a hook-shaped wake structure behind the propeller boss in the main longitudinal vortex region. The thin boundary layer at midship was increased gradually in thickness over the stern and evolved into a full three-dimensional turbulent wake.

  • PDF

Hull Structural Design for 300K Double Hull VLCC (초대형 이중선체 유조선의 구조 설계)

  • Hyon-Soo Bong;Man-Soo Kim;Jong-Koo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.123-131
    • /
    • 1993
  • Since the years of oil tanker production in the 70's, the concern of marine enviromental protection is worldwidely increased, at last it is compulsorily ruled to product the double hull tanker by International Maritime Organization(IMO). Throughout these informative years Daewoo Shipyard has developed the double hull VLCC for a future vessel. The paper presents hull design for 300K double hull VLCC which was carried out to satisfy with statutory requirement of it, focused the structural arrangement and direct calculation in cargo hold area.

  • PDF

LOADOUT DEVELOPMENT BY F.E. ANALYSIS METHODOLOGY FOR SIMILAR 300K VLCC SIZE FSO

  • Yang, Y.T.;Kang, H.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.51-55
    • /
    • 2002
  • End of July. 2002 Hyundai Heavy Industries Co. Ltd. Offshore Division is successfully completed Load-out & Float-off work of "AMENAM KPONO/FSO Project" similar to 300K VLCC size. The AMENAM FSO hull and topside module built at the HHI Offshore yard using "On-Ground Building Method" developed by HHI. Various methodologies/techniques like Flexi-built FPSO Hull. Topside module erection method. Load-out Float-off methodology etc. are combined to develop a successful on-ground building method. In this paper, we described the "Hull Structural Strength Analysis Methodology" using 3-D Finite Element Analysis and results. This analysis is performed to verily the structural integrity or the AMENAM FSO hull during the main load-out on two semi-submersible barges combined together.

  • PDF

Experimental Study on Local Flow Characteristics and Propulsive Performance of Two KRISO 300K VLCCs with Different Stern Shapes (선미선형을 변화시킨 두 척의 KRISO 300K VLCC 모형주위의 유동과 저항추진 특성에 대한 실험적 연구)

  • Wu-Joan Kim;Suak-Ho Van;Do-Hyun Kim;Chun-Ju Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.11-20
    • /
    • 2000
  • The flow characteristics around the stern region of two VLCCs with the same forebody and slightly different afterbody are investigated along with propulsive performance of the ship. The local mean flow measurements and the resistance and self-propulsion tests are carried out in the towing tank for the two VLCC hull forms. The measured results clearly show the formation of bilge vortices and their effect on propulsive efficiency. The comparisons are made for the two VLCC hull forms and the relation between stern framelines and bilge vortex strength is explored. Experimental data can provide a good test case to validate the accuracy of numerical methods and turbulence model of CFD codes for ship flow calculation.

  • PDF

An Algorithm for Generating' the Hull Structural Analysis Model Using the Seam Information of the Hull Structure at the Initial Design Stage

  • Roh, Myung-Il;Lee, Kyu-Yeul;Yoo, Seong-Jin
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.24-33
    • /
    • 2006
  • So far, the generation of a hull structural analysis model, that is, a finite element model of a hull structure, has been manually performed by a designer using design experience, and thus has required lots of time because of many constraints, the complexity, and the huge size of the hull structure. To make this task automatic, an algorithm for generating the hull structural analysis model is developed using the seam information of the hull structure. A generating system of the hull structural analysis model is implemented based on the developed algorithm. The applicability of the developed algorithm is demonstrated by applying it to the generation of the global and hold structural analysis models of a deadweight 300,000 ton VLCC (Very Large Crude oil Carrier). The results show that the developed algorithm can quickly generate these models at the initial design stage.

Minimum Weight Design of Built-up T Based on HCSR (HCSR 기반 T형 조립부재의 최소중량설계)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.

Development of a Preswirl Stator Propulsion System for a 300K VLCC (30만톤 초대형 유조선을 위한 전류고정날개 추진 시스템 개발)

  • Jin-Tae Lee;Moon-Chan Kim;Suak-Ho Van;Ki-Sup Kim;Ho-Chung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • Procedures for the development of a preswirl stator-propulsion system for a VLCC 300K are described in this paper. The preswirl stator-propulsion system is one of the compound propulsor systems, which is used for the purpose of recovering propeller slipstream rotational energy by locating a stator in front of the propeller. The preswirl stator-propulsion system can be considered as a most reliable energy saving device because of its simple mechanism. Five stators are designed for the existing hull form and propeller, and their effects are verified by model tests. Open-water test result of the preswirl stator-propulsion system at the cavitation tunnel show $4{\sim}6%$ increase of open-water efficiency compared to that of a propeller without stators. Maximum 6.5% decrease of delivered power at the design speed(15.5knots) is expected with the designed stator based on the analysis results of resistance and self-propulsion test at the towing tank.

  • PDF

Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis - (선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 -)

  • S.G. Lee;C.K. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The damages due to wave impact loads are largely affected by impact pressure impulse and impact load area. The objective of this study is, as the third step, to perform dynamic structural analysis of bow flare structure of 300,000 DWT VLCC using LS/DYNA3D code, and to verify its dynamic structural behaviors. The impact load areas of stiffener space $1.5s{\times}1.5s$ and $2.5s{\times}2.5s$ are applied to bow flare structure part with relatively flexible stiffeners, and with stiff members such as stringers, webs etc., respectively, under the wave impact load with peak height 6.5MPa, tail 1.0MPa, and duration time 5.0msec. Through the dynamic structural analysis in this study, it might be thought that the structural strength of bow flare structure is generally sufficient for these wave impact load and areas, except that large damages were found at bow flare structure area with flexible wide span stiffeners.

  • PDF

Development of Structural Analysis System of Bow Flare Structure(2) - Prediction of Wave Impact Load Area - (선수 구조부 구조해석 시스템 개발(2) - 파랑충격하중 면적의 추정 -)

  • S.G. Lee;J.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.87-94
    • /
    • 1999
  • Empirical design is still used to avoid a structural damage because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The damage due to wave impact load is largely affected by impact pressure impulse and impact load area. The objective of this study is, as the second step, to develop an efficient scantling program of bow flare structure, and to predict its impact load area by comparing maximum dented deformations at center of idealized panel structure model of bow flare structure of 300k DWT VLCC using LS/DYNA3D code, which will be used for its verification of dynamic structural analysis, as the next step. Through this study, the impact load area was estimated as $1.5s{\times}1.5s$ stiffener space(s) in the case of panel with stiffeners and as $2.5s{\times}2.5s$, with stringers, under impact pressure curve with peak height 6.5MPa, tail height 1.0MPa, and duration time 5.0msec.

  • PDF

Analysis of the Nonlinear Wave-Making Problem of Practical Hull Forms Using Panel Method (패널법을 이용한 일반 상선의 비선형 조파문제 해석)

  • Do-Hyun Kim;Wu-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • A panel method based on the raised panel approach is developed for the nonlinear ship wave problem of practical hull forms. For the validation of the present numerical scheme. the developed method is first applied to Series 60 hull for which the extensive experimental data are available. As practical applications. the developed method is applied to KRISO 3600 TEU container ship and KRISO 300K VLCC. With the primary emphasis on the nonlinear effects of the global wave pattern generated by the two commercial ships. the calculated wave patterns are compared and verified with the experiments of KRISO. It is found that the calculated results of the present method are quite satisfactory compared with the linear methods like Dawson's approach and Neumann-Kelvin solution.

  • PDF