• Title/Summary/Keyword: 3D Mesh Model

Search Result 307, Processing Time 0.033 seconds

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

A Watermarking of 3D Mesh Model using EGI Distributions of Each Patch (패치별 EGI 분포를 이용한 3D 메쉬 모델 워터마킹)

  • 이석환;김태수;김병주;김지홍;권기룡;이건일
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.80-90
    • /
    • 2004
  • Watermarking algorithm for 3D mesh model using EGI distribution of each patch is proposed. The proposed algorithm divides a 3D mesh model into 6 patches to have the robustness against the partial geometric deformation. Plus, it uses EGI distributions as the consistent factor that has the robustness against the topological deformation. To satisfy both geometric and topological deformation, the same watermark bits for each subdivided patch are embedded by changing the mesh normal vectors. Moreover, the proposed algorithm does not need not only the original mesh model but also the resampling process to extract the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against geometrical and topological attacks.

  • PDF

3D Mesh Model Watermarking Based on Projection

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1572-1580
    • /
    • 2005
  • The common requirements for watermarking are usually invisibility, robustness, and capacity. We proposed the watermarking for 3D mesh model based on projection onto convex sets for invisibility and robustness among requirements. As such, a 3D mesh model is projected alternatively onto two convex sets until it converge a point. The robustness convex set is designed to be able to embed watermark into the distance distribution of vertices. The invisibility convex set is designed for the watermark to be invisible based on the limit range of vertex movement. The watermark can be extracted using the decision values and index that the watermark was embedded with. Experimental results verify that the watermarked mesh model has both robustness against mesh simplification, cropping, affine transformations, and vertex randomization and invisibility.

  • PDF

Structure-Preserving Mesh Simplification

  • Chen, Zhuo;Zheng, Xiaobin;Guan, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4463-4482
    • /
    • 2020
  • Mesh model generated from 3D reconstruction usually comes with lots of noise, which challenges the performance and robustness of mesh simplification approaches. To overcome this problem, we present a novel method for mesh simplification which could preserve structure and improve the accuracy. Our algorithm considers both the planar structures and linear features. In the preprocessing step, it automatically detects a set of planar structures through an iterative diffusion approach based on Region Seed Growing algorithm; then robust linear features of the mesh model are extracted by exploiting image information and planar structures jointly; finally we simplify the mesh model with plane constraint QEM and linear feature preserving strategies. The proposed method can overcome the known problem that current simplification methods usually degrade the structural characteristics, especially when the decimation is extreme. Our experimental results demonstrate that the proposed method, compared to other simplification algorithms, can effectively improve the quality of mesh and yield an increased robustness on noisy input mesh.

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Complete 3D Surface Reconstruction from Unstructured Point Cloud (조직화되지 않은 점군으로부터의 3차원 완전 형상 복원)

  • Li Rixie;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.570-577
    • /
    • 2005
  • In this study a complete 3D surface reconstruction method is proposed based on the concept that the vertices of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

A Study on the Voxel Mesh Technique for Finite Element Modeling of Human Bone (인체 골(bone)의 유한요소 모델링을 위한 VOXEL MESH 기법에 관한 연구)

  • 변창환;오택열;백승민;채경덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1081-1084
    • /
    • 2002
  • In this study, we perform 3-D reconstruction of human proximal femur from DICOM files by using voxel mesh algorithm. After 3-D reconstruction, the model converted to Finite Element model which developed for automatically making not only 3-D geometrical model but also FE model from medical image dataset. During this job, trabecular pattern, one of characteristic of human bone can be added to the model by means of giving it's own elastic property calculated from intensity in CT scanned image to the each voxel. And then another model is made from same image dataset which have two material properties - one corresponds to cortical bone, another to trabecular bone. Finally, validity of voxel mesh technique is verified through comparing results of FE analysis, free vibration and stress analysis.

  • PDF