• Title/Summary/Keyword: 3D sequential inverter

Search Result 4, Processing Time 0.024 seconds

Interface trap density distribution in 3D sequential Integrated-Circuit and Its effect (3차원 순차적 집적회로에서 계면 포획 전하 밀도 분포와 그 영향)

  • Ahn, TaeJun;Lee, Si Hyun;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2899-2904
    • /
    • 2015
  • This paper introduces about the effect on $I_{DS}-V_{GS}$ characteristic of transistor that interface trap charge is created by damage due to heat in a 3D sequential inverter. A interface trap charge distribution in oxide layer in a 3D sequential inverter is extracted using two-dimensional device simulator. The variation of threshold voltage of top transistor according to the gate voltage variation of bottom transistor is also described in terms of Inter Layer Dielectric (ILD) length of 3D sequential inverter, considering the extracted interface trap charge distribution. The extracted interface trap density distribution shows that the bottom $HfO_2$ layer and both the bottom and top $SiO_2$ layer were relatively more affected by heat than the top $HfO_2$ layer with latest process. The threshold voltage variations of the shorter length of ILD in 3D sequential inverter under 50nm is higher than those over 50nm. The $V_{th}$ variation considering the interface trap charge distribution changes less than that excluding it.

SPICE Simulation of 3D Sequential Inverter Considering Electrical Coupling (전기적 상호작용을 고려한 3차원 순차적 인버터의 SPICE 시뮬레이션)

  • Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.200-201
    • /
    • 2017
  • This paper introduces the SPICE simulation results of 3D sequential inverter considering electrical coupling. TCAD data and the SPICE data are compared to verify that the electrical coupling is well considered by using BSIM-IMG for the upper NMOS and LETI-UTSOI model for the lower PMOS. When inter layer dielectric is small, it is confirmed that electrical coupling is well reflected in the top transistor $I_{ds}-V_{gs}$ characteristics according to the change of the bottom transistor gate voltage.

  • PDF

Electrical characteristics of 3-D stacked CMOS Inverters using laser crystallization method (레이저 결정화 방법을 적용한 3차원 적층 CMOS 인버터의 전기적 특성 개선)

  • Lee, Woo-Hyun;Cho, Won-Ju;Oh, Soon-Young;Ahn, Chang-Geun;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.118-119
    • /
    • 2007
  • High performance three-dimensional (3-D) stacked poly-Si complementary metal-oxide semiconductor (CMOS) inverters with a high quality laser crystallized channel were fabricated. Low temperature crystallization methods of a-Si film using the excimer-laser annealing (ELA) and sequential lateral solidification (SLS) were performed. The NMOS thin-film-transistor (TFT) at lower layer of CMOS was fabricated on oxidized bulk Si substrate, and the PMOS TFT at upper layer of CMOS was fabricated on interlayer dielectric film. The 3-D stacked poly-Si CMOS inverter showed excellent electrical characteristics and was enough for the vertical integrated CMOS applications.

  • PDF

The Design of the Ternary Sequential Logic Circuit Using Ternary Logic Gates (3치 논리 게이트를 이용한 3치 순차 논리 회로 설계)

  • 윤병희;최영희;이철우;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.52-62
    • /
    • 2003
  • This paper discusses ternary logic gate, ternary D flip-flop, and ternary four-digit parallel input/output register. The ternary logic gates consist of n-channel pass transistors and neuron MOS(νMOS) threshold inverters on voltage mode. They are designed with a transmission function using threshold inverter that are in turn, designed using Down Literal Circuit(DLC) that has various threshold voltages. The νMOS pass transistor is very suitable gate to the multiple-valued logic(MVL) and has the input signal of the multi-level νMOS threshold inverter. The ternary D flip-flop uses the storage element of the ternary data. The ternary four-digit parallel input/output register consists of four ternary D flip-flops which can temporarily store four-digit ternary data. In this paper, these circuits use 3.3V low power supply voltage and 0.35m process parameter, and also represent HSPICE simulation result.