• Title/Summary/Keyword: 4th-order Runge-Kutta

Search Result 89, Processing Time 0.026 seconds

Comparison of Numerical Orbit Integration between Runge-Kutta and Adams-Bashforth-Moulton using GLObal NAvigation Satellite System Broadcast Ephemeris

  • Son, Eunseong;Lim, Deok Won;Ahn, Jongsun;Shin, Miri;Chun, Sebum
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.201-208
    • /
    • 2019
  • Numerical integration is necessary for satellite orbit determination and its prediction. The numerical integration algorithm can be divided into single-step and multi-step method. There are lots of single-step and multi-step methods. However, the Runge-Kutta method in single-step and the Adams method in multi-step are generally used in global navigation satellite system (GNSS) satellite orbit. In this study, 4th and 8th order Runge-Kutta methods and various order of Adams-Bashforth-Moulton methods were used for GLObal NAvigation Satellite System (GLONASS) orbit integration using its broadcast ephemeris and these methods were compared with international GNSS service (IGS) final products for 7days. As a result, the RMSE of Runge-Kutta methods were 3.13m and 4th and 8th order Runge-Kutta results were very close and also 3rd to 9th order Adams-Bashforth-Moulton results. About result of computation time, this study showed that 4th order Runge-Kutta was the fastest. However, in case of 8th order Runge-Kutta, it was faster than 14th order Adams-Bashforth-Moulton but slower than 13th order Adams-Bashforth-Moulton in this study.

HIGH ORDER EMBEDDED RUNGE-KUTTA SCHEME FOR ADAPTIVE STEP-SIZE CONTROL IN THE INTERACTION PICTURE METHOD

  • Balac, Stephane
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.238-266
    • /
    • 2013
  • The Interaction Picture (IP) method is a valuable alternative to Split-step methods for solving certain types of partial differential equations such as the nonlinear Schr$\ddot{o}$dinger equation or the Gross-Pitaevskii equation. Although very similar to the Symmetric Split-step (SS) method in its inner computational structure, the IP method results from a change of unknown and therefore do not involve approximation such as the one resulting from the use of a splitting formula. In its standard form the IP method such as the SS method is used in conjunction with the classical 4th order Runge-Kutta (RK) scheme. However it appears to be relevant to look for RK scheme of higher order so as to improve the accuracy of the IP method. In this paper we investigate 5th order Embedded Runge-Kutta schemes suited to be used in conjunction with the IP method and designed to deliver a local error estimation for adaptive step size control.

A Study on the Fluid Flow Around an Oscillating Circular Cylinder (진동하는 원주 주위의 유체 유동에 관한 연구)

  • Suh, Yong-Kweon;Mun, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.73-84
    • /
    • 1990
  • A circular cylinder is oscillated in th otherwise quiescent viscous fluid. Numerical analysis performed for this problem by using the fourth-order Runge-kutta method for the unsteady Navier-stokes equations. For K(Kelegan-Carpenter's No.)=5, the flow developed symmetrically, while for K=10, it revealed random patterns. The coefficient of the rms force is overestimated by 20-30% compared with the experimental result.

  • PDF

Digital simulation of differential equations driven by white noise (백색잡음 미분방정식에 대한 디지탈 시뮬레이션)

  • 조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.383-388
    • /
    • 1991
  • This paper analizes two numerical integration methods, both based on the Runge Kutta 4-th order formula for deterministic systems, for digital simulation of a differential equation driven by white noise. It is shown that a "standard' Runge Kutta method for stochasitic systems yields solutions of Stratonovich differential equations, while Riggs and Phillips' method results in solutions of Ito differential equations. Therefore the white noise differential equation must be converted into the equivalent Ito equation before the latter method is used. Digital simulation results for a simple differential equation are also presented.nted.

  • PDF

Accuracy Analysis of GLONASS Orbit Determination Strategies for GLONASS Positioning (GLONASS 측위를 위한 위성좌표 산출 정확도 향상 방안)

  • Lee, Ho-Seok;Park, Kwan-Dong;Kim, Hye-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2010
  • Precise determination of satellite positions is necessary to improve positioning accuracy in GNSS. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration method and their accuracy dependence on the integration step and the integration time was analyzed. The 3D RMS (Root Mean Square) differences between the results from I-second integration step and 300-second integration step was about 3 cm, but the processing time was one hundred times less for the I-second integration time case. For trials of different integration times, the 3D RMS errors were 8.3 m, 187.3 m, and 661.5 m for 30-, 150-, and 300-minutes of integration time, respectively. Though this integration-time analysis, we concluded that the accuracy gets higher with a shorter integration time. Thus we suggest forward and backward integration methods to improve GLONASS positioning accuracy, and with this method we can achieve a 5-meter level of 3-D orbit accuracy.

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

A Study on the Fluid Flow Around an Oscillating Circular Cylinder (진동하는 원주 주위의 유체 유동에 관한 연구)

  • Suh, Yong-Kweon;Mun, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.223-223
    • /
    • 1990
  • A circular cylinder is oscillated in th otherwise quiescent viscous fluid. Numerical analysis performed for this problem by using the fourth-order Runge-kutta method for the unsteady Navier-stokes equations. For K(Kelegan-Carpenter''s No.)=5, the flow developed symmetrically, while for K=10, it revealed random patterns. The coefficient of the rms force is overestimated by 20-30% compared with the experimental result.

A Study on the Optimal Design for a Positive Crankcase Ventilation valve (크랭크케이스 강제 환기 밸브의 최적설계에 관한 연구)

  • Lee J. H.;Lee Y. W.;Kim J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.197-201
    • /
    • 2005
  • According to operating conditions of each engine, a PCV valve has various flow rates and pressure characteristic. In a developed country, it has been developing by a computational design simulation. But, Korean companies have no ability of technical design for a PCV valve. So, they depend on their experiments and copy the designs of foreign companies when they need to design new PCV valves. These problems cause increase of error rate and take much time. Hence, optimal design for a PCV valve is needed to secure for continuous competition against foreign automobile companies. In this study, we used 4th order Runge-Kutta method for the prediction of spool movements and applied Bernoulli's equation for the determination of flow area. A spool geometry and spool displacement were predicted to be satisfied in comparison with their experiment.

  • PDF

A Research on Predicting Dynamic Behavior of Door Locking System for Side Impact Safety

  • Kwak, K.T.;Choi, D.W.;Seo, S.W.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The main purpose of this research is to predict dynamic behavior of door locking system for side impact safety and the design process to avoid door opening is introduced. The equations of motion that represent the system are obtained from the energy equation. From them, the motion of door handle is predicted by using Runge-Kutta $4^{th}$ order method and the simulation result is compared with the real crash data. Also, the design guide to define the properties of door locking system from the standpoint of avoiding door opening phenomenon is introduced.

Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol (환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론)

  • Kim, Taehoon;park, Sungyurb;Park, Sunghoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1079-1084
    • /
    • 1998
  • Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.

  • PDF