• Title/Summary/Keyword: 5-axis Machine Tool

Search Result 135, Processing Time 0.027 seconds

Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool (5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘)

  • Yang, Seung-Han;Lee, Chul-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

A Study on the Test Workpiece for Accuracy Evaluation of 5-Axis Machine Tool (5축 공작기계 정밀도 평가를 위한 표준 공작물에 관한 연구)

  • Youn, Jae-Woong;Kim, Ki-Hwan;Park, Jong Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Recently, a demand for precision 5-axis machine tools is significantly increasing, and the maintenance of machine tool accuracy becomes more important. it is very difficult to evaluate to accuracy of 5-axis M/C in the production site since it needs expensive measuring equipment and skilled engineer. On the other hand, evaluation items of 5-axis M/C are not systematically organized in the existing KS and ISO standards. In this study, the evaluation items for 5-axis M/C were derived systematically and a test workpiece was developed to evaluate the machine tool accuracy more easily. The error sources of machine tool can be estimated by machining and measuring of the test workpiece. The correlation between the machine tool accuracy and the accuracy of machined test workpiece was analyzed. As a result, the accuracy of machined test workpiece represented the accuracy of machine tool and the error sources very effectively.

A Study on Post-Processing and Machine Simulation of AC Type 5-Axis Machine Tool for Machining of Mold Surface (금형 곡면 가공을 위한 AC타입 5축 가공기의 포스트프로세싱 및 머신 시뮬레이션에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, a machine simulation system was built using the actual scale of an AC-type 5-axis machine tool for mold surface machining that can be used in applications, such as, modeling and machine building, stroke, and collision detection. The validity of the 5-axis machine simulation system was verified by performing tool path generation, post-processing, machine simulation, prototype motion simulation, and an actual cutting experiment. This entire process was intended to activate the 5-axis machining in mold surface machining.

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

5-Axis CNC Machining for Drum Cam with Rotational Follower - II (Post Processing Method for Fine Machining) (회전형 종동절을 갖는 드럼 캠의 5-축 CNC 가공 - II (정삭가공을 위한 포스트프로세싱))

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • A drum cam with rotational follower has a cam mechanism and it is mainly used in its application such as index table and ATC of machine tool. Also its use can reduce the backlash in its kinematic movement. To machine the drum cam with rotational follower, 5-axis CNC machine tool is generally used and its kinematic principle is included in it's design. Until now, the commercialized CAM software can't cover the application of the drum cam machining. Even if, some special software was developed for machining a drum cam, the post processing method for finish machining was not developed yet. And to overcome the problem, the form tool is still used on the tool path of rough machining. This study includes the induction of the post processing technique for the finish machining of drum cam on three 5-axis CNC machine tools, type AC, AB and BC. To prove the finishing geometric profile, the result was clearly verified through inspection and geometric measurement after direct machining of the drum cam in AC type 5-axis machine tool in this study.

The Development of An Error Measurement System of 5-Axis Mill & Turn Machine Tool by Double Ball Bar Test (DBB를 이용한 5축 복합가공기의 오차 측정 시스템 개발에 관한 연구)

  • Kim T.H.;Jung Y.G.;Ko H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.243-244
    • /
    • 2006
  • In this paper, the development of an error measurement system of 5-axis mill & turn machine tool presented by double ball bar test, which has been widely used to measure the overall accuracy of machining center. and the reliability of an error measurement system of 5-axis mill & turn machine tool was secured by the direct cutting test.

  • PDF

A Study on Analysis of Dynamic Characteristics and Evaluation of Dynamic Compliance of a 5-Axis Multi-tasking Machine Tool by Using F.E.M and Exciter Test (유한요소법과 가진시험법을 이용한 다기능 5축 복합가공기의 동특성 해석 및 동적 컴플라이언스 평가에 관한 연구)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Ha, Jong-Sik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • This paper describes a study on dynamic characteristics analysis and dynamic compliance evaluation of a 5-axis multi-tasking machine tool of ram-head type. Structural dynamics analysis and evaluation are necessary to machine tool design and development to secure good machine tool performance against tough and harsh machining conditions. In this study, natural frequencies and corresponding vibration modes of the machine tool structure were analyzed by using both F.E.M. modal analysis and impulse hammer test. Furthermore, dynamic compliance of the machine tool was analyzed by using F.E.M. and also measured by using a hydraulic exciter test. Both the theoretical analysis and experimental test results showed good agreement with each other.

Design of a Machine Tool containing a 3-strut Parallel Kinematic Structure (병렬구조 머시닝센터 설계기술)

  • Kim, Tae-Jung;Kim, Suk-Il;Nah, Seung-Pyo;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.878-885
    • /
    • 2011
  • A kinematically-hybrid 5-axis machine tool is analyzed from the perspective of machine tool design. Its kinematic characteristics are pointed out, which should be considered during the conceptual design process. A result of the structural analysis of the machine is presented, which is performed during the detailed design process. It is also presented how we improve the thermal characteristics of the machine tool by changing the installation position of the actuators.

A Study on Efficient Machining of Impeller with 5-axis NC Machine (임펠러의 효율적인 5축 NC 가공에 관한 연구)

  • 조환영;이희관;공영식;양균의
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.399-404
    • /
    • 2002
  • An efficient method of machining impeller is presented. In the roughing process, the cutting area is divided into two regions to reduce cutting time and select cutting tools. The regions are determined by characteristic point on the geometry of impeller blade. Then, the tool of the maximum radius is selected in each area. Tool interference in cutting areas is avoided by checking the intersection between cooing tool axis and ruling line on blade surface.

  • PDF