• Title/Summary/Keyword: 6-hydroxydopamine

Search Result 74, Processing Time 0.027 seconds

Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells (흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과)

  • Kim Eun-Mi;Choi Sinkyu;Lee Kyunglim;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Protective Effects of Thujae Semen against Neurotoxicity Induced by 6-hydroxydopamine in PC12 Cells (백자인의 6-하이드록시도파민으로 유도된 뇌세포독성에 대한 보호효과)

  • Kim, Hyo-Geun;Shim, Jin-Sup;Ju, Mi-Sun;Cho, Seung-Hun;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • Objectives : This study was performed to evaluate the neuroprotective effect of water extracts from Thujae Semen(TSW) in PC12 cells. Methods : We performed 2,2-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging assay, 2,2-azinobis- (3-ethyl-benzothiazoline-6-sulfonic acid(ABTS) cation scavenging assay, and determination of total polyphenolic content to examine the antioxidant effects of TSW. We also carried out 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay(MTT), reactve oxygen species(ROS) assay, and nitric oxide(NO) assay to examine neuroprotective effects against 6-hydroxydopamine(6-OHDA) in PC12 cells. Results : TSW showed $IC_{50}$ values of 404.3 and 219.9 ${\mu}g/mL$ in DPPH and in ABTS assays, respectively. TSW showed 9.74 ${\mu}g/mL$ of total polyphenol contents. TSW incresed cell viability in a dose dependent manner and it showed protective effect against 6-OHDA neurotoxicity at the concentration of 25-200 ${\mu}g/mL$. Moreover, it recovered 6-OHDA induced cell death at the same concentrations. The extract showed a dose dependent reduction of ROS and NO generation by 6-OHDA. Conclusions : We concluded that TSW has neuroprotective effect against 6-OHDA-induced toxicity in PC12 cells through ROS and NO inhibition.

  • PDF

Protective Effects of Nelumbinis Semen Against Neurotoxicity fuduced by 6-Hydroxydopamine in Dopaminergic Cells (연자육의 6-하이드록시도파민으로 유도된 도파민 세포 독성에 대한 보호효과)

  • Kim, Hyo-Geun;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.24 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Objectives : This study was performed to evaluate the neuroprotective effect of water extracts from Nelumbinis semen (NSW) in dopaminergic cells. Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azinobis3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) cation scavenging assay, and determination of total polyphenolic content to examine the antioxidant effects of NSW. We also evaluated the neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced toxicity using 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide assay (MIT) assay, trypan blue cytotoxicity assay, and nitric oxide assay in SH-SY5Y cells and tyrosine hydroxylase (TH) immunohistochemistry in primary rat dopaminergic neurons. Results : NSW showed $IC_{50}$ values of 184.80 and 92.90 ${\mu}$g/mL in DPPH and in ABTS assays, respectively. NSW showed 1.05% of total polyphenol contents. NSW showed protective effect against 6-0HDA-induced neurotoxicity whereas no influence on cell viability at the concentration of 1${\sim}$50 ${\mu}$g/mL. NSW reduced NO generation while 6-OHDA produced it. Moreover, it protected rat dopaminergic neurons against 6-0HDA at a dose of 1 ${\mu}$g/mL. Conclusions : These results indicated that NSW has neuroprotective effect against 6-0HDA-induced neurotoxicity through antioxidant activity in dopaminergic cell culture.

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung;Kim, Sang-Cheol;Kang, Jung-Il;Boo, Hye-Jin;Hyun, Jin-Won;Koh, Young-Sang;Park, Deok-Bae;Yoo, Eun-Sook;Kang, Ji-Hoon;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.454-462
    • /
    • 2010
  • The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.

Preventive effects of nano-graphene oxide against Parkinson's disease via reactive oxygen species scavenging and anti-inflammation

  • Hee-Yeong Kim;Hyung Ho Yoon;Hanyu Seong;Dong Kwang Seo;Soon Won Choi;Jaechul Ryu;Kyung-Sun Kang;Sang Ryong Jeon
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.202-207
    • /
    • 2023
  • We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nano-graphene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons.

Carbon Monoxide Ameliorates 6-Hydroxydopamine-Induced Cell Death in C6 Glioma Cells

  • Moon, Hyewon;Jang, Jung-Hee;Jang, Tae Chang;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Carbon monoxide (CO) is well-known as toxic gas and intrinsic signaling molecule such as neurotransmitter and blood vessel relaxant. Recently, it has been reported that low concentration of CO exerts therapeutic actions under various pathological conditions including liver failure, heart failure, gastric cancer, and cardiac arrest. However, little has been known about the effect of CO in neurodegenerative diseases like Parkinson's disease (PD). To test whether CO could exert a beneficial action during oxidative cell death in PD, we examined the effects of CO on 6-hydroxydopamine (6-OHDA)-induced cell death in C6 glioma cells. Treatment of CO-releasing molecule-2 (CORM-2) significantly attenuated 6-OHDA-induced apoptotic cell death in a dose-dependent manner. CORM-2 treatment decreased Bax/Bcl2 ratio and caspase-3 activity, which had been increased by 6-OHDA. CORM-2 increased phosphorylation of NF-E2-related factor 2 (Nrf2) which is a transcription factor regulating antioxidant proteins. Subsequently, CORM-2 also increased the expression of heme oxygenase-1 and superoxide dismutases (CuZnSOD and MnSOD), which were antioxidant enzymes regulated by Nrf2. These results suggest that CO released by CORM-2 treatment may have protective effects against oxidative cell death in PD through the potentiation of cellular adaptive survival responses via activation of Nrf2 and upregulation of heme oxygenase-1, leading to increasing antioxidant defense capacity.

Lesion of Subthalamic Nucleus in Parkinsonian Rats : Effects of Dopamine $D_1$ and $D_2$ Receptor Agonists on the Neuronal Activities of the Substantia Nigra Pars Reticulata

  • Park, Yong-Sook;Jeon, Mi-Fa;Lee, Bae-Hwan;Chang, Jin-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.455-461
    • /
    • 2007
  • Objective : It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson's disease. The effects of SKF38393 (a $D_1$ receptor agonist) and Quinpirole (a $D_2$ receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion. Methods : SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats. Results : The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration of Quinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons. Conclusion : This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of $D_1$ and $D_2$ agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and $D_1$, $D_2$ selective antagonist.

The Effect of Chemical Sympathectomy on Moxibustion-Induced Immunomodulation in the Rat Spleen (백서의 비장에서 화학적 교감신경절제가 뜸(구(灸))자극으로 유도된 면역변조에 미치는 영향)

  • Han, Jae-Bok;Oh, Sang-Duck;Lee, Ki-Seok;Choi, Ki-Soon;Cho, Young-Wuk;Ahn, Hyun-Jong;Bae, Hyun-Soo;Min, Byung-Il
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.109-114
    • /
    • 2002
  • Background: To investigate the role of sympathetic nervous system (SNS) in moxibustion-induced immunomodulation, the effects of chemical sympathectomy on moxibustion-induced changes in splenic NK cell cytotoxicity, T and B cell proliferation were studied in Sprague-Dawley male rats. Methods: Chemical sympathectomy was achieved with intraperitoneal injection of 6-hydroxydopamine 50 mg/kg/day for 3 successive days. Direct moxibustion (6-minute interval, 9 moxa ball, each of which weighing 0.007 g and burning for 40 seconds) was applied on unilateral anterior tibial muscle region where Zusanli (ST36) acupoint is located, once a day for 7 successive days. NK cell cytotoxicity was measured by $4hr-^{51}Cr$ release assay. Mitogen-induced lymphocyte proliferation was analyzed by [$^3H$]-thymidine incorporation assay. Results: NK cell cytotoxicity was suppressed by moxibustion, more in sympathectomized rats than in vehicle-treated rats. T cell proliferation induced by concanavalin A was not affected by moxibustion. B cell proliferation induced by lipopolysaccharide showed no significant change in vehicle-treated rats, but an increase in sympathectomized rats by moxibustion. Sympathectomy alone induced augmentation of NK cell cytotoxicity and suppression of T cell proliferation. Conclusion: These results suggest that SNS has no direct relation with moxibution-induced immunomodulation but has an important role in the mechanism to keep the homeostasis of immune system by tonically inhibiting excessive changes of various immune components.

Effects of Fetal Mesencephalic Cell Grafts on the Intrastriatal 6-hydroxydoapmine Lesioned Rats

  • Joo, Wan Seok;Nam, Eun-Joo;Im, Heh-ln;Jung, Jin-Ah;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • The effects of fetal mesencephalic cell grafts on the restoration of nigrostriatal dopaminergic function were studied in the intrastriatal 6-hydroxydopamine-lesioned rats. Four weeks after lesioning, transplantation of ventral mesencephalic cells from embryonic day 14 fetuses showed the number of tyrosine hydroxylase (TH) positive cells and fiber outgrowth in the grafted striatum, and significantly ameliorated symptomatic motor behavior of the animals, as determined by apomorphine-induced rotation. Furthermore, in substantia nigra pars compacta (SNc), the numbers of TH + cells and fibers were markedly restored. Dopamine content of ipsilateral SNc was close to that of contralateral SNc $(91.9{\pm}9.8%)$ in the transplanted animals, while the ratio was approximately 32% in sham-grafted animals. These results indicate that grafted cells restored the activity for the dopaminergic neurons located in SNc, although they were transplanted into striatum. In addition, we showed that the implanted fetal cells expressed high level of glial cell line-derived neurotrophic factor (GDNF), suggesting that the transplanted fetal cells might serve as a dopamine producer and a reservoir of neurotrophic factors. These results may be helpful in consideration of the therapeutic transplantation at early stage of PD.