• Title/Summary/Keyword: A12024-T3

Search Result 12, Processing Time 0.015 seconds

Study of Materials and Stress Ratios on Fatigue Crack Propagation Rate Using Parameter ΔA (.DELTA.A를 파라미터로 이용한 피로크랙전파속도에 미치는 재료 및 응력비의 영향에 대한 연구)

  • 박영철;오세욱;김광영;허정원;강정호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1373-1380
    • /
    • 1992
  • The local cyclic strain distribution near the crack tip has been investigated by the fine Dot Grid Strain Measurement Method, which had been suggested strain measurement method to resolve experimental difficulties by authors. It has been found that the magnitude of the local cyclic strain distribution(.DELTA..epsilon.$_{eq}$ )near a crack tip has been varied by the applied cyclic load level and material, but the shape of the local cyclic strain distribution near the crack tip has been experimentally scrarcely altered : that is .DELTA..epsilon.$_{eq}$ = .DELTA.A.f(.theta.). $r^{-1}$ . Consequently, the local cyclic strain field near the crack tip could be favorably characterized by a single parameter fatigue strain intensity factor .DELTA.A. In addition, with the viewpoint that .DELTA.A depends on material and load level, .DELTA.A has been applied to evaluate the fatigue crack propagation rate and usefulness of the result has been considered. As a result, it has been ascertained that .DELTA.A has been a useful parameter to evaluate the fatigue crack propagation rate.

Biochemical Characterization of Thermophilic Dextranase from a Thermophilic Bacterium, Thermoanaerobacter pseudethanolicus

  • Park, Tae-Soon;Jeong, Hyung-Jae;Ko, Jin-A;Ryu, Young-Bae;Park, Su-Jin;Kim, Do-Man;Kim, Young-Min;Lee, Woo-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.637-641
    • /
    • 2012
  • TPDex, a putative dextranase from Thermoanaerobacter pseudethanolicus, was purified as a single 70 kDa band of 7.37 U/mg. Its optimum pH was 5.2 and the enzyme was stable between pH 3.1 and 8.5 at $70^{\circ}C$. A half-life comparison showed that TPDex was stable for 7.4 h at $70^{\circ}C$, whereas Chaetominum dextranase (CEDex), currently used as a dextranase for sugar milling, was stable at $55^{\circ}C$. TPDex showed broad dextranase activity regardless of dextran types, including dextran T2000, 742CB dextran, and alternan. TPDex showed the highest thermostability among the characterized dextranases, and may be a suitable enzyme for use in sugar manufacture without decreased temperature.