• Title/Summary/Keyword: A549 and apoptosis

Search Result 222, Processing Time 0.029 seconds

Croton Tiglium Extract Induces Apoptosis via Bax/Bcl-2 Pathways in Human Lung Cancer A549 Cells

  • Li, Changyou;Wu, Xiao;Sun, Rongli;Zhao, Peng;Liu, Fengjuan;Zhang, Chunling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4893-4898
    • /
    • 2016
  • Objective: To investigate the impact of a Croton tiglium extract on cellular proliferation and apoptosis in a non-small cell lung cancer cell line (A549) in vitro. Methods: A Croton tiglium seed methanol extract was prepare and assessed for effects on A549 cells regarding cellular proliferation, apoptotic rates, and expression of apoptosis related genes and proteins using real-time PCR and immunofluorescence. Results: The tested Croton tiglium extract inhibited A549 cell proliferation in a dose- and time-dependent manner, with significant elevation of apoptotic indexes at various concentrations after 24 h. In addition, rates in both early and late stages were higher in treated than untreated groups, the $100{\mu}g/ml$ dose causing the highest levels of apoptosis. RT-PCR showed that A549 cells treated with $100{\mu}g/ml$ Croton tiglium extract for 24 h has markedly higher Bax mRNA expression levels and obviously lower Bcl-2 expression levels than controls, equivalent results being observed for proteins by immunofluorescence. However, the mRNA expression levels of Fas and caspase-8 were not significantly altered. Conclusion: A Croton tiglium extract can inhibit proliferation of A549 cells and promote apoptosis though Bax/Bcl-2 pathways.

Induction of p53-dependent Apoptosis by Resveratrol in Human Cancer Cells, A549 and SKOV3 (레스베라트롤에 의한 인간 암세포주, A549와 SKOV3의 p53의존적 Apoptosis 유발)

  • Lee, Seul Gi;Nam, Ju-Ock
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.194-200
    • /
    • 2016
  • Resveratrol, a polyphenolic compound present in many fruits and vegetables such as grapes, mulberries, and peanuts, has been reported to have various biological effects. However, the molecular mechanisms underlying resveratrol-induced apoptosis in A549 ovarian cancer cells are not well understood. In this study, we investigated the effect of resveratrol on A549 lung cancer cells (expressing wild-type p53) and compared it with that observed for SKOV3 ovarian cancer cells (expressing null-type p53). Resveratrol significantly inhibited the viability and proliferation of A549 cells in a concentration- and time-dependent manner, compared with its effects on SKOV3 cells. It also induced A549 cell apoptosis, but did not affect anoikis resistance. Furthermore, the viability and proliferation of p53-knockdown A549 cells were unaffected by the presence of resveratrol. Therefore, we demonstrate that the anticancer effect of resveratrol against A549 lung cancer cells is dependent on the presence of functional p53.

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells (A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용)

  • Kim, Tae Hyeon;Kim, Dan Hee;Mun, Yeun Ja;Lim, Kyu Sang;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

  • Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC) have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax) ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-${\kappa}B$ expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

Induction of Apoptosis by Bee Venom in A549 Human Lung Epithelial Cancer Cells through Modulation of Bcl-2 and IAP Family and Activation of Caspases (Bcl-2 및 IAP family의 발현 변화와 caspase 활성을 통한 봉독의 인체폐암세포 apoptosis 유도)

  • Woo, Hyun-Joo;Kim, Hyun-Joong;Hong, Su-Hyun;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae;Park, Dong-Il;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1596-1600
    • /
    • 2007
  • Bee venom is used to treat inflammatory diseases in Korean traditional medicine and has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in bee venom-induced apoptosis are still uncharacterized in human lung cancer cells. In the present study, we investigated the effects of bee venom on the apoptosis of A549 human lung epithelial cancer cells. Treatment of bee venom inhibited the cell viability and induced apoptosis in a concentration-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometry analysis. Bee venom-induced apoptosis in A549 cells was associated with a marked inhibition of anti-apoptotic Bcl-2 expression without significant changes in the levels of Bax and Bcl-xL. Bee venom treatment also inhibited the levels of IAP family members such as cIAP-1 and cIAP-2 and induced the proteolytic activation of caspase-3 and caspase-9. Although further studies are needed, the present results suggest that apoptotic signals evoked by bee vemon in A549 cancer cells may converge caspases activation through a down-regulation of Bcl-2 rather than an up-regulation of Bax. These findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of bee vemon in human cancer cells.

Steroidal Saponins from Paris polyphylla Induce Apoptotic Cell Death and Autophagy in A549 Human Lung Cancer Cells

  • He, Hao;Sun, Yan-Ping;Zheng, Lei;Yue, Zheng-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1169-1173
    • /
    • 2015
  • Background: Paris polyphylla (Chinese name: Chonglou) had been traditionally used for a long time and shown anti-cancer action. Based on the previous study that paris polyphylla steroidal saponins (PPSS) induced cytotoxic effect in human lung cancer A549 cells, this study was designed to further illustrate the mechanisms underlying. Materials and Methods: The mechanisms involved in PPSS-induced A549 cell death were investigated by phase contrast microscopy and fluorescence microscopy, flow cytometry and western blot analysis, respectively. Results: PPSS decreased the proportion of viable A549 cells, and exposure of A549 cells to PPSS led to both apoptosis and autophagy. Apoptosis was due to activations of caspase-8, caspase-3, as well as cleavage of PARP, and autophagy was confirmed by up-regulation of Beclin 1 and the conversion from LC3 I to LC3 II. Conclusions: PPSS was able to induce lung cancer A549 cell apoptosis and autophagy in vitro, the results underlining the possibility that PPSS would be a potential candidate for intervention against lung cancer.

Mitochondria-mediated Apoptosis in Human Lung Cancer A549 Cells by 4-Methylsulfinyl-3-butenyl Isothiocyanate from Radish Seeds

  • Wang, Nan;Wang, Wei;Huo, Po;Liu, Cai-Qin;Jin, Jian-Chang;Shen, Lian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2133-2139
    • /
    • 2014
  • 4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a wellknown anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (${\Delta}{\Psi}m$), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC.

Dihydroartemisinine Enhances Dictamnine-induced Apoptosis via a Caspase Dependent Pathway in Human Lung Adenocarcinoma A549 Cells

  • An, Fu-Fei;Liu, Yuan-Chong;Zhang, Wei-Wei;Liang, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5895-5900
    • /
    • 2013
  • Dictamnine (Dic) has the ability to exert cytotoxicity in human cervix, colon, and oral carcinoma cells and dihydroartemisinin (DHA) also has potent anticancer activity on various tumour cell lines. This report explores the molecular mechanisms by which Dic treatment and combination treatment with DHA and Dic cause apoptosis in human lung adenocarcinoma A549 cells. Dic treatment induced concentration- and time-dependent cell death. FCM analysis showed that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) was not involved. In addition, inhibition of caspase-3 using the specific inhibitor, z-DQMD-fmk, did not attenuate Dic-induced apoptosis, implying that Dic-induced caspase-3-independent apoptosis. Combination treatment with DHA and Dic dramatically increased the apoptotic cell death compared to Dic alone. Interestingly, pretreatment with z-DQMD-fmk significantly attenuated DHA and Dic co-induced apoptosis, implying that caspase-3 plays an important role in Dic and DHA co-induced cell apoptosis. Collectively, we found that Dic induced S phase cell cycle arrest at low concentration and cell apoptosis at high concentration in which mitochondria and caspase were not involved and DHA enhanced Dic induced A549 cell apoptosis via a caspase-dependent pathway.