• Title/Summary/Keyword: AAPH

Search Result 93, Processing Time 0.026 seconds

Fucoidan Protects LLC-PK1 Cells against AAPH-induced Damage

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2008
  • This study was designed to investigate the protective effect of fucoidan against AAPH-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). Oxidative stress was induced by exposing of LLC-PK1 cells to the 1 mM 2,2'-azobis(2-amidino propane) dihydrochloride (AAPH) for 24 hr. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant (p<0.05) decrease in cell viability, but fucoidan treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To investigate the protective action of fucoidan against AAPH-induced damage of LLC-PK1 cells, we measured the effects of fucoidan on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. Fucoidan had protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Furthermore, fucoidan showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of fucoidan was $48.37{\pm}1.54\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The fucoidan also had high hydroxyl radical scavenging activity ($IC_{50}=32.03\;{\mu}g/mL$). These results indicate that fucoidan protects against AAPH-induced LLC-PK1 cell damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging offree radicals.

Antioxidant activity of aqua-acupuncture of Polygoni Radix rubra in rats treated with AAPH (적하수오(赤何首烏) 약침(藥針)의 AAPH처리된 흰쥐에 대한 항산화작용)

  • Lim, Nak-Chul
    • Journal of Haehwa Medicine
    • /
    • v.8 no.2
    • /
    • pp.361-374
    • /
    • 2000
  • This study was done to elucidate the antioxidant activities of Polygoni Radix rubra(赤何首烏) by way of aqua-acupuncture methods. After 10% & 20% concentrations of liquid extract of Polygoni Radix rubra(PRR) were acupunctured on Joksamri(足三里) of rats with acute and chronic experimental oxidation by AAPH(2, 2' -azobis (aminoidinopropane), hydrochloride), various kinds of experiments were performed. The results were obtained as follows: 1. In acute oxidant experiment, the amount of TBARS was significantly increased from 0.5 hr to 1.5 hr after AAPH treatment 2. In acute oxidant experiment by AAPH, uric acid as significantly increased while the others didn't show any difference such as total protein, albumin, bilirubin. 3. In chronic oxidant experiment by AAPH, PRR significantly increased the body weight in comparison with control group, whereas liver and spleen tended to increase, lung and kidneys tended to decrease. 4. In chronic oxidant experiment by AAPH, PRR significantly decreased the GPT, hemolysis of erythrocytes, TBA and BUN, where GOT was significantly reduced in 20% PRR treated group, and TG was significantly in 10% PRR treated group. These results suggest that PRR has potent antioxidant activity and needs more studies on microsomal fraction of liver and kidney.

  • PDF

Cytoprotective Effects of Polyamines Against Oxidative Stress (산화 스트레스에 대한 폴리아민의 세포보호 효과)

  • Ahn Seoni;Lee Ji Young;Chung Hae Young;Yoo Mi-Ae;Kim Jong-Min;Kim Byeong Gee
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.626-632
    • /
    • 2005
  • The polyamines are essential components of all eukaryotic cells and absolutely necessary for cell growth. In the present study, the cytoprotective role of polyamine was characterized. When $Ac_2F$ rat liver cells were treated with 1M 2,2'-azobis (2-amidinopropane) dehydrochloride (AAPH), a water soluble free radical initiator, viability of the cells was noticeably decreased due to the increase of reactive oxygen species (ROS). The cytotoxic effect of AAPH as well as ROS generation were significantly inhibited by the treatment of polyamines. Among polyamines, especially spermine at $20{\mu}M$ concentration exerted over $45\%$ inhibition of AAPH-induced ROS generation. Western blotting was performed to determine whether superoxide dismutase(SOD) or catalase (CAT) expression was involved in oxidative stress. The AAPH treatment blocked both SOD and CAT protein expressions. Spermine could recover those protein expressions to the untreated control levels. According to the result of cycline E measurement, AAPH might block the entry of the cells into S phase of the cell cycle. The reduced expression of cyclin E protein could be fully recovered by the addition of spermine. The antioxidative effects of spermine was also further proved by the apopotitic morphological analysis using ethidium bromide and acridine orange.

Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells

  • Hwang, Ji-Young;Lee, Hee-Seob;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study was designed to investigate the protective effect of Sasa borealis leaf extract on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in LLC-PK1 cells (porcine kidney epithelial cells). The butanol fraction from Sasa borealis leaf extract (SBBF) was used in this study because it possessed strong antioxidant activity and high yield among fractions. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in a significant decrease in cell viability, but SBBF treatment protected LLC-PK1 cells from AAPH-induced cell damage in a dose dependant manner. To determine the protective action of SBBF against AAPH-induced damage of LLC-PK1 cells, we measured the effects of SBBF on lipid peroxidation and antioxidant enzymes activities of AAPH treated cells as well as scavenging activities on superoxide anion radical and hydroxyl radical. SBBF had a protective effect against the AAPH-induced LLC-PK1 cellular damage and decreased lipid peroxidation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, SBBF showed strong scavenging activity against superoxide anion radical. The $IC_{50}$ value of SBBF was $28.45{\pm}1.28\;{\mu}g/mL$ for superoxide anion radical scavenging activity. The SBBF also had high hydroxyl radical scavenging activity ($IC_{50}=31.09{\pm}3.08\;{\mu}g/mL$). These results indicate that SBBF protects AAPH-induced LLC-PK1 cells damage by inhibiting lipid peroxidation, increasing antioxidant enzyme activities and scavenging free radicals.

Protective Effect of Co-treatment of Lutein and Fucoidan Against AAPH-Induced Damage in THP-1 Cells (루테인과 후코이단 병용 처리에 의한 AAPH 유도 세포 손상 억제)

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.306-310
    • /
    • 2010
  • This study was designed to investigate the protective effect of the combination of fucoidan and lutein against AAPH-induced oxidative stress in THP-1 cells. The combination of fucoidan and lutein existed significant antioxidant effect on AAPH-damaged THP-1 cells by using lipid peroxidation and cellular antioxidant capacity assay. Fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) did not affect at all the viability of THP-1 cells, but protected the AAPH-damage of THP-1 cells at the same concentration. The viability of THP-1 cells was 0% with 1 mM AAPH alone, the protective effect of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) was 37% and 36%, respectively. The combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) exhibited significant inhibitory effect of lipid peroxidation using TBARS assay and cellular antioxidant capacity using DCFH-DA assay. In lipid peroxidation, the TBARS value of 1 mM AAPH alone was $0.8{\pm}0.03\;nM$ MDA, its of the combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) was $0.2{\pm}0.05\;nM$ MDA. In cellular antioxidant capacity, the combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) exhibited significant cellular antioxidant capacity of 76%, whereas quercetin($10\;{\mu}M$) as positive control exhibited the cellular antioxidant capacity of 32%. These results indicate that the cotreatment of fucoidan and lutein protects against AAPH-induced THP-1 cell damage by inhibiting lipid peroxidation, increasing cellular antioxidant capacity.

Effects of Administration of 2,2'-Azobis(2-amidinopropane) Dihydrochloride(AAPH) on Liver Function in Rats 1. Clinical Signs and Blood Chemical Values (2,2'-Azobis (2- amidinopropano) Dihydrochloride(AAPH)의 투여가 쥐의 간기능에 미치는 영향 1. 임상증상 및 혈액 화학치 소견)

  • 강정부;손호상;김철호
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 1998
  • This study was performed to estimate the clinical signs and changes of biochemical parameters in rats with hepatic injury induced by the administration of 2, 2'-azobis(2- amidinopropane)dihydrochloride (AAPH) . Minor behavioral change, brittleness of skin hair and decreased volume of water and feed intake were observed in ra% 2 hours after AAPH administration compared to control group. Concentration of serum albumin showed lower than that of control group. However, concentration of total bilirubin has shown higher than that of control group. As time goes on, . serum LDH activity increased significantly compared to control group, but senun CPK activity did not change compared to control group. Passive hemanglutination of $\alpha $-fetoprotein was negative in all the treaDent groups and control group.

  • PDF

The Protective Effects of Isoflavone Extracted from Soybean Paste in Free Radical Initiator Treated Rats

  • Nam, Hye-Young;Min, Sang-Gi;Shin, Ho-Chul;Kim, Hwi-Yool;Fukushima, Michihiro;Han, Kyu-Ho;Park, Woo-Jun;Choi, Kang-Duk;Lee, Chi-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.586-592
    • /
    • 2005
  • This study was performed to investigate the antioxidant effects of Korean soybean paste extracts (SPE) on 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced liver damage in rats. Thirty healthy Sprague Dawley rats were selected and divided into 5 groups. Isoflavone contents were measured using HPLC technique. The antioxidant activity was measured in the plasma and liver of the rats with the following results. Levels of isoflavone in fermented soy paste, red pepper paste and soy sauce were 28.9, 30.3 and $3.4\;{\mu}g/g$ for daidzein and 244.3, 187.7 and $6.1\;{\mu}g/g$ for genistein, respectively. The activities of glutamate oxaloacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) were significantly higher in the AAPH-treated group in the SPE-AAPH group (p<0.05). The thiobarbituric acid reactive substance (TBARS) production was significantly increased in the AAPH-treated liver tissue (P<0.05). Glutathione peroxidase (GPx), glutathione reductase (GR) and catalase in the liver were significantly (p<0.05) decreased by AAPH administration. The glutathione (GSH) concentration was higher in the SPE-treated (Ed- confirm) group than in the control and other groups (p<0.05). These results suggest that SPE led to increased anti oxidative activities against AAPH-induced peroxyl radical.

a-Tocopherol Inhibits the Accumulation of Phospholipid Hydroperoxides in Rat Tissues Induced by 2, 2'-azinobis Hydrochloride

  • Lim, Beong-Ou;Choue, Ryo-Won;Kim, Jong-Dai;Ju, Hyang-Ran;Park, Dong-Ki
    • Nutritional Sciences
    • /
    • v.6 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The effect of a-tocopherol on the formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxides, in the tissues of 2, 2 -azobis Hydrochloride (AAPH) - dosed rats was investigated. In a-tocopherol supplemented rats, the activities of glutathione peroxidase, catalase and superoxide dismutase were significantly inhibited, compared with the AAPH group. AAPH treatment led to oxidation of phospholipids in the liver, lungs, brain, plasma and red blood cells (RBC), resulting in a notable increase in phosphatidylcholine hydroperoxide (PCOOH). All tissues of the rats given an $\alpha$-tocopherol supplement showed an attenuation of the stimulating effect of AAPH, leading to low levels of formation of PCOOH. Also, the rats injected with AAPH and a-tocopherol showed relatively normal-appearing hepatocytes, except for a little loss of the granules. With regards to the morphological appearance of the liver, it was observed that oral intakes of a -tocopherol resulted in an antioxidant defense against attacks of peroxyl radicals. Thus, we suggest that a-tocopherol is potentially helpful in protecting membrane phospholipids against oxidative damage in vivo.

Production of Exo-polysaccharide from Submerged Culture of Grifola frondosa and Its Antioxidant Activity

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1253-1257
    • /
    • 2009
  • Exo-polysaccharide isolated from the culture of Grifola frondosa was modified by sodium periodate ($NaIO_4$) and sodium chlorite ($NaClO_2$) to delete polysaccharide part and phenolic compound, respectively, and was investigated what effect has each part of exo-polysaccharide against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1). Oxidative stress on LLC-PK1 cell was measured by cell viability, lipid peroxidation, superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activity. Exposure of LLC-PK1 cells to 1 mM AAPH for 24 hr resulted in significant decrease in cell viability, SOD, and GSH-px action, and significant increase in lipid peroxidation. The treatment of exo-polysaccharide and $NaIO_4$ modified sample protected LLC-PK1 cells from AAPH-induced cell damage such as cell viability, lipid peroxidation, SOD, and GSH-px activity in a dose dependant manner (10, 100, and $500{\mu}g/mL$). However, the treatment of $NaClO_2$ modified sample did not affect for cell viability, lipid peroxidation, SOD, and GSH-px activity. The antioxidant activity of exo-polysaccharide was significantly decreased on AAPH-induced LLC-PK1 cell system when phenolic compound was deleted. The antioxidant activity was significantly correlated with the content of phenolic compound of exo-polysaccharide.

Effects of Administration of 2,2'-Azobis(2-amidinopropane) Dihydrochloride(AAPH) on Liver Function in Rats 2. Serum Enzyme Activities (2,2'-Azobis (2- amidinopropane) dihydrochloride (AAPH)의 투여가 쥐의 간기능에 미치는 영향 2. 혈청 효소 활성치)

  • 강정부;손호상;김철호
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.79-82
    • /
    • 1998
  • This study was performed to determine the changes of serum enzyme activities in rats with hepatic injury induced by the administration of AAPH. Minor behavioral change, brittleness of skin hair and decreased water and fled intake were observed in rats administered intraperitoneally with AAPH. Serum AST and ALT activities pre-treatment were $65{\pm} 13.8 and 32{\pm}$ 12.6 IU/L, respectively and increased sharply from 2 hours of administration and reached $1248{\pm} 77.6 and 946{\pm}$ 45.6 IU/L, respectively at 48 hours of administration. Serum ALP and $\gamma -GTP activities pretreatment were 221 {\pm} 75.6 and 2.2{\pm}$ 0.35 IU/L respectively and increased sharply from 8 hours of administration and reached $767{\pm} 44.9 IU/L and 8.0{\pm} 1.23 IU/L,$ respectively at 48 hours of administration.

  • PDF