• Title/Summary/Keyword: AC railway feeding

Search Result 39, Processing Time 0.038 seconds

Inductive Disturbance Reduction Method for Electric Railway (전기철도해서의 유도장해 경감책에 관한 연구)

  • Lee, Kyo-Sung;Kim, Do-Hun;Lee, Yong-Jae;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.369-371
    • /
    • 2002
  • The railway power feeding system is divided into AC power feeding system and DC power feeding system. In downtown area. DC power feeding system is used and AC power feeding system is used in intercity railway system. AC power feeding system raises a inductive disturbance that is divided into electrostatic induction and electromagnetic induction. Especially, it has a bad effect on communication lines. So inductive disturbance reduction method has been adopted in many system. In this paper, we deals with the inductive disturbance reduction method of railway power feeding system and of sides affected by inductive disturbance.

  • PDF

Analysis of Feeder wire fault Scenario on AC Railway Feeding System considering Train Position (전차 위치를 고려한 교류 전기철도 급전계통의 급전선 고장 시나리오 해석)

  • Huh, Seunghoon;Cho, Gyujung;Ryu, Kyusang;Lee, Hundo;Kim, Chulhwan;Min, Myunghwan;An, Taepung;Kwon, Seongil
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.272-273
    • /
    • 2015
  • This paper analyze scenario of feeder wire fault that occurs in the AC feeding system considering train position. The fault location of AC feeding system is calculated by measuring impedance. However, in this way, estimation error can be occurred because of tie connection, boosting current, etc. Therefore, it's hard to find fault location, so that it is required to detailed circuit analysis according to fault location. We analyze the short circuit impedance values with respect to feeder wire fault according to a train position. In this paper, PSCAD is used for modeling and analysis of AC railway feeding system.

  • PDF

The Estimation of Rail Current Distribution According to Feeding Scheme (급전방식에 따른 레일전류 분포 예측)

  • Lee, C.M.;Han, M.S.;Jung, H.S.;Kim, J.R.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1619-1621
    • /
    • 2005
  • AC electric railway feeding system classifies into three groups such as normal, TIE and PP feeding method. If the feeding scheme of ac electric railway is changed, current distribution flowing through the line is also modified. And if the current distribution is altered according to the feeding scheme, returned tendency through rail load current or fault current of the train is changed. So the investigation about error correcting method of protective relay is needed considering feeding scheme. In this paper prior to error correcting of protective relay, through interpreting feeding circuit, changes in current distribution of the rail in accordance with feeding would be predicted and analyzed.

  • PDF

A Study on the Overcurrent Relay Modeling and Protective Coordination for Overload in Domestic AC Electrical Railway System (국내 교류 전기철도 급전계통 보호용 과전류 계전기 모델링 및 과부하 보호 협조에 관한 연구)

  • Kim, Hyun-Dong;Cho, Gyu-Jung;Huh, Seung-Hoon;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1121-1127
    • /
    • 2016
  • In this paper, modeling of overcurrent relay(OCR) to protect domestic AC electric railway Auto Transformer(AT) feeding system and operation characteristic analysis on overload condition are described. The target system of this paper is actual site where overload trip of circuit breaker occurs frequently. Because this AT feeding system is made of parallel single track which had a load(electric train) respectively, and is connected with only T phase of Scott Transformer. In addition, this system has been feeding 66kV voltage by KEPCO, not 154kV. We focus on protective coordination of Scott Transformer primary side and secondary side OCR for Korea single track AC electrical railway system in operation currently. We modeled single track AT feeding system and OCR. Also we performed faults and overload analysis for verification of OCR's setting values and system modeling. To analyze above mentioned research, we used PSCAD/EMTDC software tool.

A Study on an infuence of power quality problem on the electric train at dead section (절연구간에서의 전력품질 문제가 전기철도에 미치는 영향에 관한 연구)

  • Lee, Bong-Yi;Kim, Jae-Chul;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.92-94
    • /
    • 2005
  • In this paper, when electric train is in dead-section the effect on electric train system was dealt. The feeding system of electrical railway is AC or DC. When the electric train is passed AC feeding system to DC, vice versa or phase is changed in between AC feeding systems, there is a dead section. A dead section usually makes the electrical system complex md may have an adverse effect on the electrical system inside the train. Accordingly, it is important to analyze the effect on trains in dead-section. Modeling an electric train and simulation using PSCAD/EMTDC was accomplished to analyze how power quality problem such as inverter switching surge is propagated to electric train through the feeding line, railway, pantograph.

  • PDF

A Power Losses Analysis of AC Railway Power Feeding Network using Adaptive Voltage Control (능동형 전압제어를 통한 교류 전기철도 급전망에 대한 전력손실 분석)

  • Jung, Hosung;Kim, Hyungchul;Shin, Seongkuen;Kim, Jinho;Yoon, Kiyong;Cho, Yonghyeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1621-1627
    • /
    • 2013
  • This paper compares power losses between voltage controlled before and after using power conversion device in AC feeding system. For this purpose we present voltage control procedures and criteria and model high speed line and train using PSCAD/EMTDC to compare power losses in various feeding condition. Power losses of the simulation result in power control before and after in single point feeding system was reduced maximum 0.37 MW(23.8 %) and average 0.23 MW(20.5 %) when one vehicle load operates maximum load condition. When three vehicles operate maximum load condition in one feeder section, power losses after voltage control was reduced 1.03 MW(49.5%) compared to before voltage control. And, power loss of parallel feeding system is reduced the average 0.08 MW(7.2 %) compared to the single feeding system. In conclusion, adaptive voltage control method using power conversion device can reduce power losses compared with existing method.

The comparison and investigation of power supply capability according to feeding schemes in AC electric railway system (교류전기철도시스템에서 급전계통 구성에 따른 급전성능 비교검토)

  • Lee, Chang-Mu;Oh, Kwang-Hae;Chang, Sang-Hun;Han, Mun-Seub
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1236-1238
    • /
    • 2001
  • The electrified railway has various power supply schemes. Although the identical trains are operated in same condition and the impedance of track are equal, the genealogy impedance of track is changed according to composition method of feeding scheme. So, the collection voltage of train and supplying power from railway substation are greatly unlike. For simulation of collection voltage and power supply according to feeding scheme, using 6-port network analysis proposed previously simulate collection voltage and supply power according to feeding scheme(Parallel Post feeding system, normal feeding system and tie feeding system) and compare and investigate each characteristics.

  • PDF

A Phase-shifter for Regulating Circulating Power Flow in a Parallel-feeding AC Traction Power System

  • Choi, Kyu-Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1137-1144
    • /
    • 2014
  • A parallel-feeding AC traction power system increases the power supply capacity and decreases voltage fluctuations, but the circulating power flow caused by the phase difference between the traction substations prevents the system from being widely used. A circuit analysis shows that the circulating power flow increases almost linearly as the phase difference increases, which adds extra load to the system and results in increased power dissipation and load unbalance. In this paper, we suggest a phase shifter for the parallel-feeding AC traction power system. The phase shifter regulates the phase difference and the circulating power flow by injecting quadrature voltage which can be obtained directly from the Scott-connection transformer in the traction substation. A case study involving the phase shifter applied to the traction power system of a Korean high-speed rail system shows that a three-level phase shifter can prevent circulating power flow while the phase difference between substations increases up to 12 degrees, mitigate the load unbalance, and reduce power dissipation.

Harmonics analysis based on a frequency domain in Electric Feeding System (전기철도 급전시스템의 주파수 기반모델을 이용한 고조파 해석)

  • Han Moonseob;Lee Jangmu;Jung Hosung;Kim Joorak
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1315-1318
    • /
    • 2004
  • Each feeding power is transformed 3 phases of KEPCO through SCOTT transformer and operate a electric train in AC Feeding system of electric railway. Nowaday a power conversion system, installed inside the train, generate a harmonics and has a effect on a power quality and it is necessary to install a countermeasures. This report is proposed a new technique to simulate a power system based on frequency model. The result is resonable relatively with a experimental one.

  • PDF

Estimation about Application Effects of Energy Storage System at AC Electric Railway (교류전기철도에서의 에너지저장시스템 적용효과 예측)

  • Lee, Chang-Mu;Lee, Han-Min;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1849-1854
    • /
    • 2010
  • Energy Storage System(ESS) is installed at feeding line of railway substation. ESS will absorb regenerative energy when train braking and also charge electric energy when feeding line is no load condition. Absorbed and charged energy will be supplied when train is accelerating condition. Due to ESS the energy variation will be minimized and this effect is estimated.

  • PDF