• Title/Summary/Keyword: AC withstand voltage

Search Result 46, Processing Time 0.031 seconds

Breakdown Characteristics of Dry Air under 362 kV GIB (362 kV GIB 내에서 건조공기의 절연파괴 특성)

  • Han, Ki-Son;Ju, Hyung-Jun;Yoon, Jin-Yul;You, Hong-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.804-808
    • /
    • 2010
  • In this paper, we studied the dielectric breakdown voltage characteristics by the AC withstand voltage test on using green insulation dry air instead of $SF_6$ insulation gas used in the GIB (gas insulated bus) of 362 kV GIS (gas insulated switchgear). The AC withstand voltage test applied to the standard KEPCO's 362 kV GIB with dry air insulation, and the equivalence of dielectric breakdown voltage for dry air and $SF_6$ gas were examined, and the empirical formulas of dielectric breakdown voltage for dry air were calculated, and the criterion of AC withstand voltage test for dry air insulation was derived. Using the criterion, dry air can be used instead of $SF_6$ gas for 362 kV GIB in the factory acceptance test was confirmed.

Breakdown Characteristics of Dry Air under 170[kV] GIB (170[kV] GIB 내에서 건조공기(Dry Air)의 절연파괴 특성)

  • Han, Ki-Son;Yoon, Jin-Yul;Ju, Hyung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.136-142
    • /
    • 2010
  • In this paper, we changed $SF_6$ insulation gases used already in the GIB(Gas Insulated Bus, gas insulated busbar) of switching appliances of power grid 170[kV] GIS(Gas Insulated Switchgear, Gas Insulated Switchgear) with green insulation dry air gases and studied dielectric breakdown voltage characteristics by the AC voltage withstand test. Withstand test AC voltage applied to the standard KEPCO's 170[kV] GIB with dry air insulation and and the equivalent of dry air and $SF_6$ gas were examined. Breakdown voltage of dry air, using an expression of the experiments were calculated and AC Withstand criterion of dry air insulation for the AC voltage test was derived. Using the criterion, dry air gases can be used instead of the $SF_6$ gas was confirmed in the factory acceptance test at 170[kV] GIB.

On-line and Off-line Partial Discharge Monitoring System with HVAC Testing (HVAC에 의한 On-line, Off-line PD 모니터링)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.111-114
    • /
    • 2008
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

Analysis of Impulse Withstand Voltage Performance of Lighting Equipment (조명기기의 임펄스내전압 성능의 분석)

  • Lee, Bok-Hee;Pang, Pyung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.91-96
    • /
    • 2014
  • Modern electronic circuits are becoming more vulnerable to damage by surges, and it is required to improve the impulse withstand voltage performance of electrical and electronic equipment. This paper presents the impulse withstand voltage performance of lighting equipment connected to power lines, and the impulse withstand voltage tests for fluorescent lamp, LED lamp and halogen lamp were carried out according to the reference standards under normal service conditions. To conduct performance tests against lightning surge, a combination wave ($1.2/50{\mu}s$ voltage - $8/20{\mu}s$ current) was employed. The test surge was applied between lines or between line and ground of the specimen to be measured. The test surge was applied synchronized at the peak value of the positive and negative AC voltage waves. As a consequence, some specimens satisfied the impulse withstand voltage test criteria, but lighting equipment such as 36W fluorescent lamps, 5W and 5.5W LED lamps and 50W halogen lamp were damaged at the test voltage levels between power lines. It is needed to improve the qualities of lighting equipment to satisfy EMC immunity requirements of equipment for general lighting purposes.

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Insulating Design and Test of 22.9kV Class Mini-Model Transformer Considering AC Loss (AC Loss를 고려한 22.9kV급 Mini-Model 변압기의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;김해종;석복렬;김상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.420-424
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

On-line Condition Monitoring for Electric Equipments (전력 설비 시스템의 온라인 감시)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.103-105
    • /
    • 2008
  • In, this paper, we consider the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PO) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PO testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PO measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

A Research Trend on On-Line/Off-Line PD Insulation Diagnostic System (온라인 및 오프라인 PD 모니터링에 관한 연구 동향)

  • Choo, Jong-Hoon;Hong, Chang-Il;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2008-2009
    • /
    • 2007
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is introduced.

  • PDF

Insulation Characteristics of High Temperature Superconducting Cable (고온 초전도 레이블의 절연 특성)

  • Kim, H.J.;Kim, J.H.;Sim, K.D.;Kim, H.J.;Cho, J.W.;Seong, K.C.;Kwag, D.S.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.244-247
    • /
    • 2004
  • The electrical insulating design is important to realize a HTS power cable because the cable is operated under the high voltage environment. For the insulation design of a HTS power cable, it is necessary to investigate the AC, impulse breakdown and partial discharge(PD) inception stress of liquid nitrogen/LPP composite insulation system. Based on these results, the electrical insulation of a HTS power cable is designed and Mini-model cables are manufactured. The manufactured Mini-model cables are evaluated that AC, impulse withstand voltage, breakdown and partial discharge inception stress and analyzed characteristics insulation of HTS cable bending condition according to this paper. From these tests, the AC, impulse withstand voltage test and partial discharge inception stress is satisfied "standard technical specification of KEPCO" in Korea and the breakdown voltage was 120kV.

  • PDF

Study on the Dielectric Characteristics of Gaseous Nitrogen for Designing a High Voltage Superconducting Fault Current Limiter

  • Heo, Jeong-Il;Hong, Jong-Gi;Nam, Seok-Ho;Kang, Hyoung-Ku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.28-31
    • /
    • 2012
  • The study on the dielectric characteristics of gaseous insulation medium is important for designing current leads of superconducting machines using a sub-cooled liquid nitrogen ($LN_2$) cooling method. In a sub-cooled $LN_2$ cooling system, the temperature of gaseous insulation medium surrounding current leads varies from the temperature of coolant to 300 K according to the displacement between the electrode system and the surface of sub-cooled $LN_2$. In this paper, AC withstand voltage experiments on gaseous nitrogen according to temperature are conducted. Also, AC withstand voltage experiments on gaseous nitrogen according to pressure, size of electrode, and gap length between two electrodes are performed. It is found that there is a functional relation between the electrical breakdown voltage and the field utilization factor (${\xi}$). As a result, the empirical formula for estimating an electrical breakdown voltage is deduced by adopting the concept of field utilization factors. It is expected that the experimental results presented in this paper are helpful to design current leads for a high voltage superconducting apparatus such as a superconducting fault current limiter (SFCL) using a sub-cooled $LN_2$ cooling system.