• Title/Summary/Keyword: AIS Utility

Search Result 4, Processing Time 0.021 seconds

An Empirical Study on the Impact of Job Performance to AIS Utility Value (회계정보시스템 유용성이 업무성과에 미치는 영향에 관한 실증적 연구)

  • Kim Dong-Il
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.266-272
    • /
    • 2005
  • This study is to empirically analyze the effects on job performance of Accounting Information Systems, Analysis methods were used to Cronbach's Alpha analysis, Factor analysis, analysis of variance(ANOVA) and regression in odor by the contingency grouping method. The results of this study are as follows : First, The regression analysis had effects on AIS utility and job performance. Second, The Analysis of variance(ANOVA) had non-effects on systems operating degree and systems satisfaction. Third, The input variables of information accuracy and systems satisfaction had additional effect about IT capability.

  • PDF

Optimization of Resource Allocation for Inter-Channel Load Balancing with Frequency Reuse in ASO-TDMA-Based VHF-Band Multi-Hop Data Communication System (ASO-TDMA기반 다중-홉 VHF 대역 데이터 통신 시스템의 주파수 재사용을 고려한 채널간 부하 균형을 위한 자원 할당 최적화)

  • Cho, Kumin;Lee, Junman;Yun, Changho;Lim, Yong-Kon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1457-1467
    • /
    • 2015
  • Depending on the type of Tx-Rx pairs, VHF Data Exchange System (VDES) for maritime communication is expected to employ the different frequency channels. Load imbalance between the different channels turns out to be a critical problem for the multi-hop communication using Ad-hoc Self-Organizing TDMA (ASO-TDMA) MAC protocol, which has been proposed to provide the connectivity between land station and remote ship stations. In order to handle the inter-channel load imbalance problem, we consider a model of the stochastic geomety in this paper. After analyzing the spatial reuse efficiency in each hop region by the given model, we show that the resource utility can be maximized by balancing the inter-channel traffic load with optimal resource allocation in each hop region.

Study on Volume Measurement of Cerebral Infarct using SVD and the Bayesian Algorithm (SVD와 Bayesian 알고리즘을 이용한 뇌경색 부피 측정에 관한 연구)

  • Kim, Do-Hun;Lee, Hyo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.591-602
    • /
    • 2021
  • Acute ischemic stroke(AIS) should be diagnosed within a few hours of onset of cerebral infarction symptoms using diagnostic radiology. In this study, we evaluated the clinical usefulness of SVD and the Bayesian algorithm to measure the volume of cerebral infarction using computed tomography perfusion(CTP) imaging and magnetic resonance diffusion-weighted imaging(MR DWI). We retrospectively included 50 patients (male : female = 33 : 17) who visited the emergency department with symptoms of AIS from September 2017 to September 2020. The cerebral infarct volume measured by SVD and the Bayesian algorithm was analyzed using the Wilcoxon signed rank test and expressed as a median value and an interquartile range of 25 - 75 %. The core volume measured by SVD and the Bayesian algorithm using was CTP imaging was 18.07 (7.76 - 33.98) cc and 47.3 (23.76 - 79.11) cc, respectively, while the penumbra volume was 140.24 (117.8 - 176.89) cc and 105.05 (72.52 - 141.98) cc, respectively. The mismatch ratio was 7.56 % (4.36 - 15.26 %) and 2.08 % (1.68 - 2.77 %) for SVD and the Bayesian algorithm, respectively, and all the measured values had statistically significant differences (p < 0.05). Spearman's correlation analysis showed that the correlation coefficient of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was higher than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (r = 0.915 vs. r = 0.763 ; p < 0.01). Furthermore, the results of the Bland Altman plot analysis demonstrated that the slope of the scatter plot of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was more steady than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (y = -0.065 vs. y = -0.749), indicating that the Bayesian algorithm was more reliable than SVD. In conclusion, the Bayesian algorithm is more accurate than SVD in measuring cerebral infarct volume. Therefore, it can be useful in clinical utility.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.