• Title/Summary/Keyword: AMF

Search Result 160, Processing Time 0.027 seconds

The Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Lettuce (상추에 대한 Arbuscular 균근균(AMF) 접종원 처리 효과)

  • Wee, Chi-Do;Li, Jun-Xi;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.498-505
    • /
    • 2010
  • To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, lettuce (Lactuca sativa L.), that were inoculated with AMF propagules. As compared to the AMF- seedlings, in AMF+ seedlings at 3 weeks after sowing, the number of leaves increased 9%, leaf fresh weight increased 59%, leaf area increased 58%, and leaf length and width increased 21-22%, and chlorophyll content increased 2%. Furthermore, at 9 weeks after sowing, compared to the AMF- plants, in lettuce plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 21% and 18%, leaf fresh weight increased 51% and 41%, root fresh weight increased 56% and 47%, and chlorophyll content increased 18% and 19%, respectively. Further this experiment indicated that the growth responses of lettuce plants inoculated with AMF during transplanting were similar to those inoculated with AMF during sowing. The results imply that the AMF infection timepoint is not important. The P content in the leaves of lettuce plants inoculated with AMF during transplanting was significantly higher (217%) than that of leaves from lettuce plants not inoculated with AMF. In contrast, the P content of the leaves of lettuce plants inoculated with AMF during the sowing stage was similar to that of leaves of control lettuce plants. In this experiment, P and chlorophyll content in AMF+ lettuce plants were higher than in AMF- plants, indicating that the photosynthetic rate was improved with AMF inoculation.

Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Perilla

  • Wee, Chi-Do;Sohn, Bo-Kyoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.408-416
    • /
    • 2010
  • To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, perilla (P. frutescens Britt.), that were inoculated with AMF propagules. In the early stages of growth of perilla, compared to the AMF- perilla seedlings, in AMF+ perilla seedlings at 3 weeks after sowing, leaf length and width increased 17% and 29%, leaf area increased 28%, and shoot fresh weight increased 33%, root total length increased 1%, and chlorophyll content increased 3%. Further at 10 weeks after sowing, compared to the AMF- perilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, leaf area increased 21% and 19%, shoot length increased 19% and 17%, root fresh weight increased 17% and 20%, and chlorophyll content increased 5.1% and 4.8%, respectively. Moreover, at 14 weeks after sowing, compared to the AMFperilla plants, in perilla plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 16% and 20%, root fresh weight increased 16% and 17% significantly. Further, leaf fresh weight increased 9% and 11%, shoot diameter increased 4.5% and 7.3%, and chlorophyll content increased 1.5% and 2.5%, respectively. The levels of many macronutrients and micronutrients were tended to be significantly higher in AMF+ plants than in AMF- plants, supporting the association between AMF and enhanced growth of plants grown from AMF+ seedlings.

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

Characteristics of Spore Density and Colonization Pattern of Arbuscular Mycorrhizal Fungi on the No-tillage Soil under Greenhouse Condition (시설재배지 무경운 토양에서 녹비작물별 Arbuscular Mycorrhizal Fungi(AMF) 감염양상과 포자밀도 특성)

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Byeong-Ho;Sohn, Bo-Kyoon;Wee, Chi-Do;Lee, Jeong-Hyun;Jung, Woo-Jin;Park, Ro-Dong
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.343-355
    • /
    • 2011
  • This work was studied the effects of spore density and infection of arbuscular mycorrhizal fungi (AMF) for no-tillage organic cultivation of pepper with wintering green manure crops cultivation in greenhouse field. Spore density of arbuscular mycorrhizal fungi (AMF) in green manure crops was 189 spores/30g fresh soils in control including alive spore (82 spores). Spore density of AMF in all green manure crops was totally 196~226 spores/30g fresh soil and alive spore was 84~112 spores/30g fresh soil. Spore density of AMF in soils of Pepper crop was range of 48.0~56.7 spores/30g fresh soils after cultivation of green manure crops. Infection structure of AMF was not significantly difference in soils of green manure crops and Pepper crop after cultivation of green manure crops. Infection rate of AMF in roots of green crops was low level by 2.8% in giant chickweed, 7.4% in rye, 9.3% in hairy vetch. Infection rate of AMF in roots of barley was the highest level by 20.3%. Infection rate of AMF in roots of Pepper crop was range of 5.2~7.2% after cultivation of green manure crops Also, infection rate of AMF in roots of Pepper crop was 8.1% after the harvest of barley. Infection structure of AMF in barley very well consisted of network with internal hyphae, while hairy vetch and rye tended to no network. There was not a significant relationship between spore density in soils and infection rate of AMF in rhizosphere of Pepper.

Diversity of Arbuscular Mycorrhizal Fungi in Rhizospheres of Camellia japonica and Neighboring Plants Inhabiting Wando of Korea (전남 완도에 서식하는 동백나무와 그 주변 식물의 근권에 분포하는 수지상균근균의 다양성)

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • In this study, the community structures of arbuscular mycorrhizal fungi (AMF) in rhizospheres of Camellia japonica and neighboring woody plants in Wando, Korea were investigated. Rhizospheres of C. japonica and other woody plants were dominated by the same species, Acaulospora mellea, but Shannon's index, species richness and total spore numbers of the AMF communities were higher in non-C. japonica than in neighboring plants. Regardless of host plant species, the frequency of A. mellea was significantly high comparing with other AMF species. The community similarity of AMF within C. japonica was significantly higher than between C. japonica and neighboring plants or neighboring plants (p<0.005). Results showed that AM fungal communities in rhizospheres of C. japonica have unique community structure and are different from that of neighboring host plants, suggesting that community structure of AMF could be influenced by host plant species.

Community Structure of Arbuscular Mycorrhizal Fungi in Upo Wetland, Korea

  • Park, Hyeok;Ko, Kang-Moon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.35-35
    • /
    • 2018
  • Arbuscular mycorrhizal fungi (AMF) are one of the most widespread symbionts globally. Owing to their enhanced nutrient absorption capacity, AMF significantly contribute to the survival of individual plants and the ecosystem functioning. Community structures of AMF are affected by many environmental factors Inland wetlands have a different environment from common forest soils, therefore, plants inhabiting wetlands may have characteristic AMF communities. The purpose of this study was to compare the AMF communities in wetlands, among the species of host plants. We sampled the roots of 3 host plant species, Phragmites communis, Miscanthus sacchariflorus, and Trisetum bifidum with rhizospheres from 3 isolated areas in Upo wetland, Korea. We extracted DNA from AMF spores in rhizospheres and the roots of 3 plant species. We amplified 18S rDNA of AMF using AMF specific primer. As a result, we confirmed 9 species from 5 genera in AMF spores, and 5 species from 3 genera in plant roots. Funneliformis caledonium was the most dominant species in field soils, on the other hand, Diversispora aurantia was the most dominant species in plant roots. We confirmed that species diversity and abundance of AMF communities were different among host plant species. These results showed that the AMF community had specific to host plants in the inland wetland.

  • PDF

Spore Diversity of Arbuscular Mycorrhizal Fungi in Upo Wetland (우포 습지에 분포하는 수지상균근균 포자의 다양성)

  • Ko, Kang-Moon;Park, Hyeok;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.19-27
    • /
    • 2019
  • We extracted arbuscular mycorrhizal fungal (AMF) spores from rhizospheres of three plants from Upo Wetland, Korea. We identified the isolated AMF spores based on morphological characteristics and phylogenetic analysis of partial 18S rDNA nucleotide sequences. The species diversity of AMF spores was calculated among the study sites and host plants. Consequently, nine species from six genera of AMF spores were identified. We confirmed the species diversity of the AMF spores in rhizospheres affected by host plants in the wetland. In the course of this study, we confirmed a previously unreported AMF species in Korea: Diversispora epigaea. We described the morphological features and molecular characteristics of this previously unreported AMF species.

Effects of Soil Environment on Symbiotic Activities of Arbuscular Mycorrhizal Fungi(AMF) in the Coastal Reclaimed Lands (Arbuscular Mycorrhizal Fungi(AMF)의 공생활성에 미치는 해안 간척지 토양환경의 영향)

  • Koh, Sung-Duk
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.562-573
    • /
    • 1998
  • The symbiotic activities of arbuscular mycorrhizal fungi (AMF) by analyzing spore density, symbiosis intensity and vertical distribution of AMF spores, phytomasses of higher plants such as Calamagrostis epigeios, Imperata cylindrica, Artemisia scoparia, Aster tripolium and Sonchus brachyotus, and physico-chemical properties of soil were determined in the rhizospheres of higher plants in abandoned two coastal reclaimed lands, which were constructed in 12 and 30 years ago, respectively. Vertical distribution of the AMF spores in the rhizospheres of higher plants was restricted within 20 cm depth from soil surface, which would be closely related with vertical distribution of root system, water table and soil aeration. Of vertical distribution of soil properties, W.C., A-P and K concentrations were increased as soil depth was lowered. In the coastal reclaimed lands, symbiotic activities of the AMF such as spore density and symbiotic intensity, were conspicuously stimulated by the increase of soil pH value, organic matter and total nitrogen concentrations, but inhibited by the increase of moisture, available phosphorus and sodium concentrations in the rhizosphere soil. Phosphorus absorption by higher plants growing in the reclaimed lands increased by the rise of symbiotic activities of AMF. Since symbiotic activities of AMF were stimulated with decreasing soil phosphorus concentrations, higher plants associated with AMF absorbed a large amount of phosphorus from the soil is low phosphorus concentrations.

  • PDF

Ecological Study on Arbuscular Mycorrhizae(AM) at Coastal Reclaimed Lands (해안(海岸) 간척지(干拓地)에서 Arbuscular Mycorrhizae(AM)에 관한 생태학적(生態學的) 연구(硏究))

  • Koh, Sung-Duk
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.394-409
    • /
    • 1994
  • The symbiotic activities of arbuscular mycorrhizal fungi(AMF) such as spore density, symbiotic intensity and vesicle density, phytomasses of higher plants such as Calamagrostis epigeios, Imperata cylindria, Artemisia scoparia, Aster tripolium and Sonchus brachyotus and seasonal change of the AMF activities, electric conductivity and zinc contents in plant and soil were determined in the rhizospheres of higher plants at abandoned old coastal reclaimed lands, where constructed in 12 and 30 years ago. If plants of reclaimed land classified to salinity, symbiotic activities of AMF were high in order of obligate halophyte, facultative halophyte and glycophyte. Also, those plants classified to life form, symbiotic activities of AMF were high in order of annual, biennial and perennial plants. Seasonal variation of spore density, one of symbiotic activities showed that the plateau density maintained continuously from the end of growing season of the higher plants to next spring. For this reason, it regarded that reproduction of AMF spore would be formed in autumn, when the higher plants will be developed. Seasonal change of symbiosis intensity, other symbiotic activities, however, showed that the highest symbiosis intensity occurred in spring and summer but the lowest in autumn. In relationships among symbiotic activities, spore density was directry proportional increase of symbiosis intensity. Moreover, phytomass of higher plants also was directly proportional to increase the spore density as well as symbiosis intensity. Vesicle density, however, did not any correlation with the phytomass, spore density and symbiosis intensity. From these results, it can know that both spore density and symbiosis intensity are strongly possible to use as the measure of symbiotic activity owing to symbiosis of tho-AMF, the more absorption of zinc by the higher plants carried out the less concentration of zinc in the soil.

  • PDF

녹비작물 재배지 Arbuscular 균근균(AMF) 포자밀도 및 감염율 조사

  • Yang, Seung-Gu;Seo, Yun-Won;Hwang, In-Taek;Kim, Hong-Jae;Son, Bo-Gyun;Wi, Chi-Do;Lee, Jeong-Hyeon
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2008.12a
    • /
    • pp.103-109
    • /
    • 2008
  • 고추 시설재배지에 녹비작물 재배가 토양의 Arbuscular 균근균(AMF) 포자밀도 및 감염율에 미치는 영향을 구명하고자 보리와 호밀, 헤어리베치, 완두콩을 파종하여 1차 녹비작물 재배 후 토양에 환원하고 고추를 재배한 다음, 2차 녹비작물 재배하여 시설 토양내 Arbuscular 균근균(AMF) 포자밀도 및 감염율을 조사한 결과 AMF포자밀도는 녹비작물 재배지가 대조구보다 높은 경향을 보였다. 기주작물별 AMF활성포자의 밀도는 보리와 완두콩이 호밀, 헤어리베치 그리고 쇠별꽃에 비하여 높았다. 녹비작물의 기주작물별 AMF포자의 형태와 크기는 유의적인 차이가 인정되지 않았다. 녹비작물의 기주 작물별로 뿌리 내 AMF 감염율을 조사한 결과 보리녹비작물에서 감염율이 높았으며 녹비작물의 감염구조는 뿌리내부 균사임이 확인되었고 AMF 균사의 Network도 매우 발달되었다.

  • PDF