• 제목/요약/키워드: AOPs

검색결과 52건 처리시간 0.022초

The applications of ozone-based advanced oxidation processes for wastewater treatment: A review

  • Hussain, Mujtaba;Mahtab, Mohd Salim;Farooqi, Izharul Haq
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.191-214
    • /
    • 2020
  • The rise in population and industrialization accounts for the generation of a huge amount of wastewaters. The treatment of this wastewater is obligatory to safeguard the environment and various life forms. Conventional methods for high strength wastewater treatment coming out to be ineffective. Advanced oxidation processes (AOPs) for such wastewater treatment proved to be very effective particularly for the removal of various refractory compounds present in the wastewater. Ozone based AOPs with its high oxidizing power and excellent disinfectant properties is considered to be an attractive choice for the elimination of a large spectrum of refractory compounds. Furthermore, it enhances the biodegradability of wastewaters after treatment which favors subsequent biological treatments. In this review, a detailed overview of the AOPs (like the Fenton process, photocatalysis, Electrochemical oxidation, wet air oxidation, and Supercritical water oxidation process) has been discussed explicitly focusing on ozone-based AOPs (like O3, O3/H2O2, O3/UV, Ozone/Activated carbon process, Ozone/Ultrasound process, O3/UV/H2O2 process). This review also comprises the involved mechanisms and applications of various ozone-based AOPs for effective municipal/industrial wastewaters and landfill leachate treatment. Process limitations and rough economical analysis were also introduced. The conclusive remarks with future research directions also underlined. It was found that ozonation in combination with other effective AOPs and biological methods enhances treatment efficacies. This review will serve as a reference document for the researchers working in the AOPs field particularly focusing on ozone-based AOPs for wastewater treatment and management systems.

Review of advanced oxidation processes (AOPs) for treatment of pharmaceutical wastewater

  • Verma, Manisha;Haritash, A.K.
    • Advances in environmental research
    • /
    • 제9권1호
    • /
    • pp.1-17
    • /
    • 2020
  • Pharmaceutically active compounds (PhACs) have become an environmental havoc in last few decades with reported cases of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), lethal effects over aquatic organisms, interference in natural decomposition of organic matter, reduced diversity of microbial communities in different environmental compartments, inhibition of growth of microbes resulting in reduced rate of nutrient cycling, hormonal imbalance in exposed organisms etc. Owing to their potential towards bioaccumulation and persistent nature, these compounds have longer residence time and activity in environment. The conventional technologies of wastewater treatment have got poor efficiency towards removal/degradation of PhACs and therefore, modern techniques with efficient, cost-effective and environment-friendly operation need to be explored. Advanced oxidation processes (AOPs) like Photocatalysis, Fenton oxidation, Ozonation etc. are some of the promising, viable and sustainable options for degradation of PhACs. Although energy/chemical or both are essentially required for AOPs, these methods target complete degradation/mineralization of persistent pollutants resulting in no residual toxicity. Considering the high efficiency towards degradation, non-toxic nature, universal viability and acceptability, AOPs have become a promising option for effective treatment of chemicals with persistent nature.

고도산화공정(AOPs)을 이용한 난분해성 염색폐수 처리 (Treatment of Refractory Dye Wastewater Using AOPs)

  • 김종오;이권기;정종태;김영노
    • 한국지반환경공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.21-29
    • /
    • 2006
  • 난분해성 염색폐수를 처리하기 위한 화학적 처리 방법으로 오존단독처리와 3가지 경우의 고도산화공정[AOPs($O_3/H_2O_2$, $O_3/UV$, $O_3/H_2O_2/UV$)]의 처리특성을 실험적으로 검토하였다. 각각의 처리방법에서 합성 염색폐수를 대상으로 $COD_{cr}$ 및 색도의 제거효율, 생분해도(biodegradability)향상에 대한 처리특성을 상대적으로 비교 평가하였고 pH, 온도, 주입량, 순환유량 등을 주요운전인자로 하여 각 산화공정의 최적운전 조건을 파악하였다. 대상으로 한 모든 공정에서 염색폐수의 색도는 단시간에 대부분 제거되었지만, $COD_{cr}$ 제거측면과 생분해도 향상에서는 $O_3/H_2O_2/UV$ 공정이 가장 좋은 처리효율을 나타냈다.

  • PDF

고도산화와 정밀여과막 혼성공정을 이용한 먹는 물에 존재하는 발암원인으로 의심되는 유기화학성분의 분해 및 제거분석에 관한 연구 (A Study on Dissolve and Remove Analysis of Pollutants in Drinking Water by Suspected Cancer Causing Organic Chemicals using AOPs (Advanced Oxidation Processes) & M/F Hybird Process)

  • 안태영;박미영;허장현;전상호;한미애;안윤희
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.193-200
    • /
    • 2007
  • The AOPs research defined by creating a sufficient amount of OH radicals from the dissolution of organic materials through photoxidation and research for a complete elimination of residual organic materials by membrane are actively ongoing. This research focuses on the hybrid processing of AOPs and M/F membrane to dissolve and eliminate organic chemicals in drinking water which are suspected of carcinogens. For this purpose, underground water was used as a source of drinking water for the hybrid processing of AOPs oxidation and M/F membrane, and a pilot plant test device was installed indoor. Carcinogenic chemicals of VOCs and pesticide were artificially mixed with the drinking water, which was then diluted close to natural water in order to examine treatment efficiency and draw optimal operation conditions. The samples used for this experiment include four chemicals phenol, chloroform, in VOCs and parathion, carbaryl in pesticide. As a result of the experiments conducted with simple, and compound solutions, the conditions to sufficiently dissolve and eliminate carcinogenic chemicals from the hybrid processing of where carcinogens were artificially added are : (hydrogen peroxide) prescribed solution 100 mg/L under pH 5.5~6.0, and the temperature $12{\sim}16^{\circ}C$, at the normal temperature and pressure. $d-O_3$ volume of 5.0 ppm and above and 30-40 minutes of reaction time are most appropriate and using MF/UF for membrane was ideal.

Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node

  • Zhang, Fuding;Zhou, Xu;Sun, Xiaohan
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.466-471
    • /
    • 2014
  • An asynchronous optical packet-switching (AOPS) node with load-balancing capability can achieve better performance in reducing the high packet-loss ratio (PLR) and time delay caused by unbalanced traffic. This paper proposes a novel dynamic load-balancing algorithm for an AOPS node with limited buffer and without wavelength converters, and considering the data flow distribution and service levels. By calculating the occupancy state of the output ports, load state of the input ports, and priorities for data flow, the traffic is balanced accordingly. Simulations demonstrate that asynchronous variant data packets and output traffic can be automatically balanced according to service levels and the data flow distribution. A PLR of less than 0.01% can be achieved, as well as an average time delay of less than 0.46 ns.

혼합된 고급산화공정(AOPs)을 이용한 내분비계장애물질(DEP, NP)의 분해특성 연구 (Degradation Characteristic of Endocrine Disruptors (DEP, NP) Using Combined Advanced Oxidation Processes (AOPs))

  • 나승민;안윤경;최명찬;조상현;김지형
    • 한국환경과학회지
    • /
    • 제20권2호
    • /
    • pp.231-239
    • /
    • 2011
  • Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including $TiO_2$, as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide ($H_2O_2$) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+$TiO_2$, significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.

광펜톤 반응에 의한 수중 2-클로로페놀 분해특성연구 (Degradation of 2-Chlorophenol in the Aqueous Phase by a Photo-Fenton Process)

  • 김일규
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.779-786
    • /
    • 2012
  • The degradation of 2-chlorophenol(2-CP) by various AOPs(Advanced Oxidation Processes) including the photo-Fenton process has been examined. In sole $Fe^{2+}$, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 2-chlorophenol than those of other AOPs including the Fenton process and the UV processes. In the photo-Fenton process, the optimal experimental conditions of 2-chlorophenol degradation were obtained at pH 3 and the $Fe^{2+}/H_2O_2$molar ratio of 1. Also the 2-chlorophenol removal efficiency increased with decreasing of the initial 2-chlorophenol concentration. 3-chlorocatechol and chlorohydroquinone were identified as photo-Fenton reaction intermediates, and a degradation pathway of 2-chlorophenol in the aqueous phase during the photo-Fenton reaction was proposed.

자외선 펜톤산화공정에 의한 수중 3-염화페놀 분해특성 및 분해경로 연구 (Degradation of 3-Chlorophenol by a Ultraviolet-Fenton Process: Parameters and Degradation Pathways)

  • 김일규
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1089-1095
    • /
    • 2013
  • The degradation of 3-chlorophenol(3-CP) by various AOPs(Advanced Oxidation Processes) including the ultraviolet / hydrogen peroxide, the Fenton and the ultraviolet(UV)-Fenton process has been conducted. The highest removal efficiency for 3-CP in the aqueous phase was obtained by the UV-Fenton process among the AOPs. In the UV-Fenton process, The removal efficiency of 3-CP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 3-CP by UV-Fenton reaction, 3-chlorocatechol, 4-chlorocatechol, and chlorohydroquinone were detected thus the degradation pathways were proposed.

광펜톤반응과 펜톤반응에 의한 수중 클로로페놀 분해비교연구 (Degradation Of 4-chlorophenol By Photo-Fenton Process and Fenton Process in Aqueous Solutions)

  • 김현승;김일규
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.463-469
    • /
    • 2011
  • The degradation of 4-chlorophenol by various AOPs(Advanced Oxidation Processes) including the Fenton and the photo-Fenton process has been examined. In sole Fe, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process. Generally more hydrogen peroxide was required to achieve higher removal efficiencies of 4-CP at constant dosage of $FeSO_4$ in both of the Fenton and the photo-Fenton processes. Based on the results, The photo-Fenton process is proposed to be the most efficient alternative for degradation of 4-chlorophenol among the processes studied in this research.

과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구 (Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide)

  • 김일규
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.