• Title, Summary, Keyword: AS4/3501-6

Search Result 3, Processing Time 0.034 seconds

치수효과를 고려한 복합재료 봉구조재의 파괴강도

  • 김두환;김덕현;백대호
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • /
    • pp.514-519
    • /
    • 2003
  • 치수효과는 콘크리트나 암석과 같은 quasi-brittle 재료들의 물리적 특성에 영향을 미친다. 모든 재료의 경우에 체적이 크면 흠이 클 수 있다. 구조물의 섬유 묶음 크기가 증가하면, 섬 유 강도가 감소하는 현상을 흔히 경험해 왔다. 복합재료내의 강도 분배와 치수사이의 관계를 특성 짓는 효과적인 방법은 아직 완전하지 않다. 본 논문에서는 경험에서 얻어진 Filament Wound 튜브에 사용되는 유리 섬유와 에폭시의 인장강도 감소비율 실험데이터로 얻은 그래프로부터 Crasto와 Kim의 일방향 보강된 AS4/3501-6복합재료의 90$^{\circ}$방향 인장강도에 대한 실험결과로부터 복합재료 봉구조재의 강도 치수효과를 증명하였다.

  • PDF

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

Analysis of Thermal Residual Stress in Composite Patches (복합재 패춰의 열잔류응력 해석)

  • 김위대;김난호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF