• Title/Summary/Keyword: ASCT2 gene

Search Result 2, Processing Time 0.016 seconds

Genetic Variants in ASCT2 Gene are Associated with the Prognosis of Transarterial Chemoembolisation-Treated Early-Stage Hepatocelluar Carcinoma

  • Ge, Nai-Jian;Shi, Zhi-Yong;Yu, Xiao-He;Huang, Xiao-Jun;Wu, You-Sheng;Chen, Yuan-Yuan;Zhang, Jin;Yang, Ye-Fa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4103-4107
    • /
    • 2015
  • Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. Transarterial chemoembolisation (TACE) is the standardized therapy for intermediate stage HCC. However, the prognosis for HCC patients treated by TACE greatly varies. Thus, there is a critical need for finding biomarkers to predict the prognosis of HCC patients. The amino acid transporter-2 (ASCT2) is involved in tumorigenesis and progression of many malignancies. This study aimed to evaluate the predictive role of two single nuclear polymorphisms (SNPs, rs3826793 and rs2070246) in the ASCT2 gene in HCC patients treated by TACE. Materials and Methods: Two functional SNPs (rs3826793 and rs2070246) in the ASCT2 gene were selected and genotyped using the Sequenom iPLEX genotyping system in a cohort of 448 unresectable Chinese HCC patients treated by TACE. Univariate and multivariate Cox proportional hazards models and Kaplan-Meier curves were used for the prognosis analyses. Results: There was no significant association between two SNPs (rs3826793 and rs2070246) in the ASCT2 gene and overall survival of TACE treated HCC patients. However, we demonstrated that patients with early stage HCC carrying T genotype in rs2070246 showed better OS than those carrying CC genotype (P=0.023). Conclusions: We demonstrated that patients with early stage HCC carrying T genotype in rs2070246 showed better OS than those carrying CC genotype.

Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma

  • So Mi Yang;Jueun Kim;Ji-Yeon Lee;Jung-Shin Lee;Ji Min Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.600-605
    • /
    • 2023
  • Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC.