• Title/Summary/Keyword: Absorption Bandwidth

Search Result 59, Processing Time 0.027 seconds

Design of Thin RC Absorbers Using a Silver Nanowire Resistive Screen

  • Lee, Junho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • A resistive and capacitive (RC) microwave absorber with a layer thickness less than a quarter of a wavelength is investigated based on closed-form design equations, which are derived from the equivalent circuit of the RC absorber. The RC absorber is shown to have a theoretical 90% absorption bandwidth of 93% when the electrical layer thickness is $57^{\circ}$ (about ${\lambda}_0/6$). The trade-offs between the layer thickness and the absorption bandwidth are also elucidated. The presented formulation is validated by a design example at 3 GHz. The RC absorber is realized using a silver nanowire resistive rectangular structure with surrounding gaps. The measured 90% absorption bandwidth with a layer thickness of ${\lambda}_0/8$ is 76% from 2.3 GHz to 5.1 GHz in accordance with the theory and EM simulations. The presented design methodology is scalable to other frequencies.

Sound Absorption Performance of a Helmholtz Resonator combined with Porous Materials (흡음재가 조합된 헬름홀츠 공명기의 흡음성능)

  • Lee, Young-Chul;Lee, Sun-Ki;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.280-285
    • /
    • 2008
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

  • PDF

A Study on the Sound Absorption Performance of a Helmholtz Resonator Combined with Porous Materials (흡음재가 조합된 헬름홀츠 공명기의 흡음성능에 관한 연구)

  • Lee, Dong-Hoon;Song, Hwa-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.628-633
    • /
    • 2009
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

Equivalent Optical Bandwidth of Reflective Electro-Absorption Modulator Based Optical Source with a Broadband Seed Light for a 2.5 Gb/s and Beyond Signal Transmission

  • Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.371-375
    • /
    • 2015
  • The impact of equivalent optical bandwidth on the performance of a system using a reflective electroabsorption modulator (R-EAM) based optical source has been experimentally evaluated with signals operating at 2.5 Gb/s and beyond. The equivalent optical bandwidth of our source with a broadband seed light was simply adjusted by using a bandwidth tunable optical filter. From the measurements, we have estimated the required equivalent optical bandwidth of our source for an error-free transmission (@ bit-error-rate of $10^{-12}$) and a forward error correction (FEC) threshold of $2{\times}10^{-4}$.

Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection

  • Kim, Gunyoung;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.71-81
    • /
    • 2019
  • This paper presents a design methodology for wideband single-layered microwave absorbers with arbitrary absorption at the design center frequency using reactive Salisbury screens. The bandwidth of the absorber increases when the flatness of the reflection response at the design center frequency is maximized. Based on this observation, closed-form design formulas for wideband absorbers are derived. As they are scalable to any design frequency, wideband reactive screens can be systematically realized using two-dimensional periodic crossed-dipole structures patterned on a resistive sheet. Based on this method, a single-layered absorber with a 90% bandwidth improved to 124% of the design center frequency is presented. For the purpose of physical demonstration, an absorber with a design center frequency of 10 GHz is designed and fabricated using a silver nanowire resistive film with a surface resistance of 30 Ω/square. The measured absorption shows a good agreement with both the calculation and the electromagnetic simulation.

A Study on the Design Parameter of a Resonance type Absorber (공명형 흡음기의 설계인자에 관한 연구)

  • Song, Hwa-Young;Lee, Young-Chul;Lee, Sun-Ki;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.964-968
    • /
    • 2007
  • A helmholtz resonator has been widely used for the purpose of suppressing low frequency noises propagated from various heat and fluid machineries. However, the resonator has demerits that the absorption bandwidth at resonance frequency is very small and a large cavity is necessary. In order to overcome these problems, in this paper, a resonator with perforated panels at the neck and/or in the cavity is proposed. The absorption performances of resonators are measured by two-microphone method and are estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients are agreed well with the corresponding values from the transfer matrix method. By introducing perforated panels at the neck of a resonator, it is shown that the absorption performances and bandwidth have a significant improvement.

  • PDF

A Study on the Sound Absorptive Characteristics and Performance of Parallel Perforated Plate Systems (병렬 다공판 시스템의 흡음특성과 성능에 관한 연구)

  • Hong, Byung-Kuk;Song, Hwa-Young;Seo, Seong-Won;Lee, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1003-1008
    • /
    • 2005
  • The acoustic absorption of a multiple layer perforated plate system is very good near the resonance frequency region, while it has been regarded as a demerit that its frequency bandwidth is considerably narrow. In order to overcome such a demerit, the parallel perforated plates with different porosities are proposed. The sound absorption of such system composed of a parallel perforated plate is calculated by an equivalent electroatoustic circuit approach and validated by comparing the calculated absorption coefficients with those measured by the two-microphone impedance tube method. The sound absorptive characteristics and performance of parallel perforated plate systems are discussed from a standpoint of frequency bandwidth related with sound absorption.

An Experimental Investigation on Noise Reduction Performance of the Absorption and the Resonance Type Duct Silencers (흡음형과 공명형 덕트 소음기의 소음저감 성능에 관한 실험적 고찰)

  • Lee, Young-Sup;Chung, Kwang-Seop;Lee, Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.897-901
    • /
    • 2010
  • A silencer has been widely used for the purpose of suppressing the noises propagated from duct of air conditioning system. The absorption type silencer is usually applied to reduce the noise with high frequency bandwidth. On the order hand, the resonance type silencer is applied to reduce the noise with low-middle frequency bandwidth. The insertion loss of silencer is measured in the reverberation room. The cut-off frequency of reverberation room is 100 Hz. The insertion loss of absorption type silencer is more larger than that for resonance type silencer regardless of changing the flow velocity.

Absorptive Characteristics of a Helmholtz Resonator Damped by a Flexible Porous Screen (유연한 다공성 스크린을 가진 헬름홀쯔 공명기의 흡음특성)

  • Kim, Sang-Ryul;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.865-868
    • /
    • 2005
  • A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator has very high absorption at resonance frequency but the frequency bandwidth is very small. Therefore many kinds of additional resistive screens have been applied to the resonator's neck in order to increase the bandwidth. This paper discusses the absorptive characteristics of a Helmholtz resonator damped by a flexible porous screen in form of wire mesh. First, various experimental results are introduced and studied. Secondly, the effect of the resistive screen is theoretically predicted. It is shown that the distance between the screen and aperture affects on the resonance frequency as well as the absorption of the system.

  • PDF

A study on the electromagnetic wave absorption properties and microstructure by the composition ratio of Ni-Zn ferrite (Ni-Zn페라이트의 조성비에 따른 전자파 흡수특성과 미세구조에 관한 연구)

  • 조재원;진성빈;문형욱;신용진
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.744-751
    • /
    • 1995
  • This paper describes a study on absorption properties of electromagnetic wave by the composition ratio of Ni-Zn ferrite. Ni-Zn ferrite was composed of 48-52mol% Fe$\_$2/O$\_$3/, 18-22mol% NiO and 26-34mol% ZnO. The sintering of the composition was carried out at 1200.deg. C for 2 hours. Through the experiments, it was found that the resonance phenomenon occured at low frequency range for high permeability and vice versa. In the case of the composition of 49mol% Fe$\_$2/O$\_$3/, 20mol% NiO and 31mol% ZnO, the bandwidth ranged from 0.35GHz to 0.95GHz with the absorption thickness of 10mm. Also, in the case of the composition 51mol% Fe$\_$2/O$\_$3/, 22mol% NiO and 27mol% ZnO, the bandwidth ranged from 0.48GHz to 1.2GHz with the absorption thickness of 6mm.

  • PDF