• Title/Summary/Keyword: Accelerated thermal aging

Search Result 125, Processing Time 0.034 seconds

Evaluation of Mechanical Properties with Thermal Aging in CF8M/SA508 Welds (CF8M과 SA508 용접재의 열화거동과 기계적특성 평가)

  • 우승완;최영환;권재도
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1968-1973
    • /
    • 2004
  • Structural degradations are often experienced on the components of nuclear power plants in reactor pressure vessels (RPV) and steam generators (SG) when these components are exposed to high temperature and high pressure for a long period of time. Such conditions result in the change of microstructures and of mechanical properties of materials, which requires an evaluation of the safeguards related to structural integrity. In a primary reactor cooling system (RCS), a dissimilar weld zone exists between cast stainless steel (CF8M) in a pipe and low-alloy steel (SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time under the operating temperature between 290 and 33$0^{\circ}C$. Under the same conditions, it is well known that degradation is not observed in low alloy steel. An investigation of the effect of thermal aging on the various mechanical properties of the dissimilar weld zone is required. The purpose of the present investigation is to find the effect of thermal aging on the dissimilar weld zone. The specimens are prepared by an artificially accelerated aging technique maintained for various times at 43$0^{\circ}C$, respectively. Then, The various mechanical test for the dissimilar welds are performed.

A Study on Physical and Electrical Condition Monitoring of Seawater Soaked CSPE (해수오염 된 CSPE의 물리·전기적 상태감시에 관한 연구)

  • Shin, Yong-Deok;Lee, Jeong-U;Jeon, Hwang-Hyun;Kim, In-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1136-1137
    • /
    • 2015
  • The accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at $100^{\circ}C$, which is equivalent to 0y, 40y, and 80y of aging, respectively, at $50^{\circ}C$. The volume electrical resistivity of dried CSPE for 570~630 days after seawater and freshwater soaking, are $1.109{\times}10^{14}{\Omega}{\cdot}cm$, $8.546{\times}10^{13}{\Omega}{\cdot}cm$ and $8.466{\times}10^{13}{\Omega}{\cdot}cm$. The applied voltage rising time of 11~12 second and dielectric breakdown time of 9~11 second of the accelerated thermal aged CSPE is shorter than those of 12~13 and 11~13 second of the non-accelerated thermal aged CSPE, respectively. It is shown that oxidation, fragment and crack are formated at hole of dielectric breakdown in CSPE. The apparent density of dried CSPE for 750 days are $1.555g/cm^3$, $1.595g/cm^3$$1.597g/cm^3$ according to accelerated thermal aging year, respectively.

  • PDF

Analysis of Degradation Characteristics for Oil-Paper Insulation using Tan Delta Measurement (Tan Delta 측정을 이용한 유침 절연지의 열화특성 분석)

  • Kim, Jeong-Tae;Kim, Woo-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1518-1523
    • /
    • 2016
  • In this study, in order to understand the degradation characteristics of oil-paper insulation for power transformers and OF cables, tan delta was measured using cable model specimens with long-term accelerated thermal and electrical aging. In addition, to find out the degradation level due to the accelerated aging, tensile strengths of aged papers were measured. As a result, tan ${\delta}$ showed the characteristics of slight decrease at the first stage and then increase with the aging time, which could be analyzed due to the evaporation of remaining moisture and the change of aging rate with time. Also, the trend of tensile strengths with aging temperature and time was appeared to be exponentially decreased and by use of these data equivalent calculated lifetimes and accelerated aging factors were derived for each aging temperatures. After then, tan ${\delta}$ was analyzed with the equivalent operating years. For all different aging temperatures, the aged data were very well fit to the equivalent operating years and it is shown that tan ${\delta}$ was increased with the decrease of tensile strength.

Thermal Aging Predictions of Polymeric Materials from Arrhenius Plot Using TGA

  • Sim, Dae-Seop;Park, Seong-Gyun;Lee, Cheol-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.473-478
    • /
    • 2002
  • Accelerated thermal aging conditions of polymeric materials were studied by Kissinger equation with TGA analysis. The activation energy was obtained from the slope of straight line of each specimen at the different TGA heating rate. Estimating activation energy from Kissinger equation was acquired, and the resulting calculation showed that 3.59, 3.0, 3.86, 3.73 for the PEEK, polyimide, polysulfone and Viton, respectively. The studied polymeric specimens are used for electrical penetration assembly in nuclear power plant. Accelerated aging time and temperature were also determined corresponding to actual service temperature and 41 years.

Research of Accelerated Aging According to Long-term Stability of Vegetable Oil (식물성절연유의 가속열화에 따른 장기적 안정성 분석)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1148-1152
    • /
    • 2012
  • The vegetable-based insulating oils are substitutes for mineral oils in oil-filled transformer. The important properties of vegetable insulating oil is their higher flash/fire point and biodegradability than conventional mineral oils. The large oil-filled transformer eliminate the risk of explosion and fire should the transformer fail and oil ignite owing to high flash/fire point of vegetable insulating oil. In addition, higher biodegradability of vegetable insulating oils can let the oil spill damage reduced. In this experiment, the real oil-filled transformers using mineral oil and vegetable oil have accelerated aging. After working on the 100% accelerated aging experiment were conducted comparing the transformer. The hottest-spot temperature using thermal coefficients were calculated to determin the degree of accelerated aging. As a result, apply mineral oil transformer in accordance with the accelerated aging life come to an end. In contrast, vegetable insulating oils showed the opposite characteristics. Vegetable insulating oil compared to the mineral oil are found to be an long life. As a result, the vegetable oil has a long-term stability.

The Behavior Variation of the Ion Viscosity and the Compressive Strength of the Seawater and Freshwater Flooded Chlorosulfonated Polyethylene After Accelerated Thermally Ageing (가속 열화 후 해수 담수 침지된 Chlorosulfonated Polyethylene의 이온 점도와 압축 강도의 특성 변화)

  • Hong, So Young;Kim, Min Ju;Jeong, Eun Mi;Kim, Jin Pyo;Shin, Yong Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.490-495
    • /
    • 2019
  • This study performs the thermal aging of chlorosulfonated polyethylene (CSPE) for 807.36 and 1,614.48 hours at $110^{\circ}C$, which is equivalent to 40 and 80 years of aging at $50^{\circ}C$ in nuclear power plants, respectively. Flat-type CSPEs were soaked in seawater for five days and then dried for five days at room temperature. Furthermore, the soaked CSPEs were cleaned for 5 days with fresh water and dried for 1,100 days at room temperature. Through this process, the log IV of the CSPEs decreases, whereas the dissipation factor of the CSPEs increases as thermally accelerated aged years increase at the measured frequency. Although the phase degree of the response voltage versus excitation voltage of the CSPEs increases, that of the response current versus excitation voltage decreases with the thermally accelerated aging. The thermal conductivity of the CSPEs increases slightly, but the thermal diffusivity does not vary with the thermally accelerated aged year increase. The displacement of the compressive strength of the CSPEs decreases gradually as the thermally accelerated aged years increase.

Multi-phase Accelerating Test Method of Thermal Aging Considering Heat Generation of Electric Equipment (전기기기의 발열을 고려한 다단계 가속열노화 방법)

  • Lim, Byung-Ju;Park, Chang-Dae;Chung, Kyung-Yul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • Thermal aging test is performed to qualify the life time of equipment in thermally aged condition. Due to long life time more than 10 years like as in power plant, the equipment is subjected to the accelerated thermal aging condition which is able to shorten the long aging test period by increasing aging temperature. Normally, conservatism of thermal aging test causes to impose unbalanced and excessive thermal load on components of the equipment, and deformation and damage problems of the components. Additionally, temperature rise of each component through heat generation of the electric equipment leads to long-term problem of the test period. Multi-phase accelerating aging test is to perform thermal aging test in multiple aging conditions after dividing into groups with various components of equipment. The groups might be classified considering various factors such as activation energy, temperature rise, glass transition temperature and melting temperature. In this study, we verify that the multi-phase accelerating aging test method can reduce and equalize the thermal over load of the components and shorten aging test time.

Characteristics of Accelerated Aging in Generator Stator Windings (발전기 고정자 권선의 가속열화 특성)

  • Kim, Hee-Dong;Kong, Tae-Sik;Ju, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.279-280
    • /
    • 2008
  • Accelerated aging tests were conducted under laboratory conditions on two generator stator bars. Electrical stress is applied in No. 1 model stator bar. Electrical and thermal stresses are applied in No. 2 model stator bar. As aging times increased from 0 to 4780h, diagnostic tests were performed on No. 1 and No. 2 model stator bars. Diagnostic tests included AC current, dissipation factor(tan$\delta$) and partial discharge magnitude. The ${\Delta}tan{\delta}$ and $\Deta$I of No. 1 and No. 2 model stator bars increased with increased in aging time.

  • PDF

Study on Accelerated Life-time Test of O-ring Rubber by Thermal Stress (열 스트레스에 의한 고무 오링의 가속수명시험에 관한 연구)

  • Shin, Young-Ju;Chung, Yu-Kyung;Choi, Kil-Yeong;Shin, Sei-Moon
    • Journal of Applied Reliability
    • /
    • v.7 no.1
    • /
    • pp.31-43
    • /
    • 2007
  • The function of O-ring seals is to prevent leakage during the service life of the components in which they are installed. The life prediction of O-ring is very important at various industry fields. Generally, to evaluated the long-term performance of O-ring in severe environments has applied a life prediction technique based on accelerated life test (ALT). In this work, Accelerated thermal aging test(l20, 130, 140, $150^{\circ}C$) of O-ring was applied for life prediction of O-ring. The property changes after thermal aging test was measured using TGA, DSC, FT - IR, Video Microscope and SEM. Shape parameter and life prediction were obtained using MINITAB program.

  • PDF