• Title/Summary/Keyword: Accelerating Rate

Search Result 180, Processing Time 0.027 seconds

CO2 Emission Considering Condition of Vehicle Acceleration (차량 가속특성에 따른 이산화탄소(CO2) 배출량 비교)

  • Joo, Jin Yun;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2015
  • PURPOSES : The present study aims to evaluate the added $CO_2$ emissions incurred from accelerating operation when to increase the speed up to the allowed level. METHODS : The methodology used are basically the relationship between emission rates and vehicle speeds or acceleration rate. These rates together are used to calculate the added $CO_2$ emissions incurred from accelerating operation. RESULTS : It was resulted that the all the emission rates are increasing proportionally to vehicle speeds or acceleration rates. Additionally, it was also resulted that allowable speeds increasing, the added emission rates are increasing rapidly. CONCLUSIONS : It may be concluded that if the allowable speed ranges are managed, $CO_2$ emissions during vehicle operation are much reduced. From this reason, it was found that the allowable speed during highway design and operation would be much necessary

ETCHING CHARACTERISTICS OF MAGNETIC THIN FILMS BY ION BEAM TECHNIQUE

  • Lee, H.C.;Kim, S.D.;Lim, S.H.;Han, S.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.538-542
    • /
    • 1995
  • The etching characteristics of magnetic thin films of permalloy and Fe-based alloys are investigated. The thin films are fabricated by rf magnetron sputtering and the substrates used are silicon and glass. Etching is done by ion beam technique and the main process parameters investigated are beam voltage, beam current and accelerating voltage. The etch rate of the magnetic films is proportional to the beam current, but it is not directly related to the accelerating voltage and beam voltage. The dependence of etch rate on the process parameters can be explained by ion current density. It is found that the ion beam etching is effective in obtaining well-developed micro-patterns on the permalloy and Fe- based magnetic thin films.

  • PDF

Study on the thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-Wait-Search method) & isothermal conditions (ARC(Heat-Wait-Search method)와 isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Jinseuk;Kim, Seunghee;Kwon, Kuktae;Chu, Chorong;Jeon, Yeongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.172-178
    • /
    • 2017
  • Thermal property is one of the important characteristic in the field of energetic materials. As the energy material is released during decomposition, DSC(Differential Scanning Calorimetry) is frequently used for the thermal analysis. In case of the dynamic DSC measurements, thermal dynamic change like melting is prevented from the thermal property measurements. And due to the predicting kg scale, the conditions of the heat exchange with the environment significantly is changed. In this study, As the method to resolve the problem, we predict the thermal aging property using the AKTS thermokinetic program from DSC measurements which performed isothermal method. Predicting the thermal aging properties from ARC(Accelerating Rate Calorimetry) measurement, we compare two results.

  • PDF

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

A Study on the Thermal Decomposition Characteristics of Nitrophenylhydrazine (니트로페닐하이드라진의 열분해 특성에 관한 연구)

  • 김관응;이근원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • For handling and storage of reactive chemicals, the hazard evaluations have been extremely important. In the chemical industry, the most concerns are focused on the thermal harzards such as runaway reactions and thermal decompositions, which are mostly governed by thermodynamics and reaction kinetics or these reactive chemical in the system. This study no investigated the thermal decomposition characteristics of nitrophenylhydrazine isomers by using differential scanning calorimeter(DSC) and accelerating rate calorimeter(ARC). Experimental results showed that exothermic onset-temperatures in nitrophenylhydrazine(NPH) isomers were about 160-$210^{\circ}C$ by DSC and 100-$150^{\circ}C$ by ARC. The decomposition temperature acquired by ARC was about 50-$60^{\circ}C$ lower than that by DSC. Reaction heats were about 40-100cal/g by DSC and 330-750ca1/g by ARC. While ortho isomer of NPH show two distinct exothermic peaks, para isomer shows a single peak in DSC curves. The first exothermic peak for 2-NPH is mainly due to intramolecular dehydration forming 1-hydroxybenzotriazole(HOBT) and the second exothermic peak is mainly due to the decomposition of HOBT formed in the first step of decomposition. The exothermin peak in the DSC curve for 4-NPH is mainly due to dissociation of hydrazino and nitro groups.

  • PDF

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Enhancing Anaerobic Digestion of Furfural Wastewater through Magnetite Powder Supplementation (자철석 가루 투입을 통한 푸르푸랄의 혐기성 소화 개선 효과 조사)

  • Seonmin Kang;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • The effect of magnetite particles on the anaerobic digestion (AD) of furfural wastewater was investigated using sequential anaerobic batch tests. The batch tests with four 500 mL anaerobic bioreactors were performed under two conditions: FC treatment for AD of furfural without magnetite particles, and FM treatment for AD of furfural with magnetite particles. The FC bioreactors showed a decreasing methane production rate (MPR) across the sequential batches, with a final batch MPR of 11.3 ± 0.4 mL CH4/L/d, indicating the need for a methanogenesis enhancer to achieve high-rate AD of furfural. Conversely, FM bioreactors exhibited significantly higher MPR, exceeding FC values by 4-196%, with a final batch MPR of 33.5 ± 0.1 mL CH4/L/d, which was about three times higher than FC. Additionally, FM bioreactors had faster degradation rates of furfural, valeric acid, and acetic acid compared to FC, with values exceeding those in PC by 3.0, 1.14, and 2.8 times, respectively. These results demonstrate that magnetite particles can enhance the AD of furfural not only by accelerating methanogenesis but also by accelerating the anaerobic degradation of furfural and its intermediates, such as volatile fatty acids. This study provides valuable insights for developing high-rate AD systems for furfural wastewater treatment.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

2020 Year of the nurse and the midwife: a call for strengthening midwifery in response to South Korea's ultra-low birth rate

  • Kim, Yun Mi
    • Women's Health Nursing
    • /
    • v.26 no.4
    • /
    • pp.255-259
    • /
    • 2020
  • Along with the low birth rate in Korea, the aging of mothers is progressing very rapidly. Recent studies have reported that the obstetric infrastructure is crumbling due to the accelerating closures of obstetric medical institutions resulting from the low birth rate and low reimbursement rates for obstetric procedures. The number of birth centers has also decreased, but women's interest in natural birth has actually increased, such that deliveries at birth centers now account for 11.8% of deliveries in obstetric clinics. In the Netherlands, Japan, and the United Kingdom, initiatives to promote natural birth through care provided by midwives increased the rate of natural births, decreased the number of cesarean sections, and lowered the rate of postpartum complications. In light of these examples, South Korea should also encourage natural delivery by midwives. A national support system for midwife applicants is necessary, and the requirements for institutions that train midwives should be revised. Independent birth centers should have emergency prescription privileges, and women should be given the choice to have a natural delivery by creating birth centers within hospitals.